

RAJ240090 / RAJ240100

3 to 10 Series Li-ion Battery Manager

1.1 Features

- Fully integrated battery management solution with battery capacity measurement and programmable protection capability.
- Supports up to 10 Li-ion or Li-Polymer battery cells in series. RAJ240090 supports 3 to 8 series cells, RAJ240100 supports 3 to 10 series cells.
- Integrated with Renesas Ultra Low Power RL78 CPU core for multi-function process
- Memory

Code flash memory: 128KB Data flash memory (up to 100,000 erase/write cycles): 4 KB SRAM: 7KB

Clock generator

High speed on-chip oscillator: up to 32 MHz Low speed on-chip oscillator: 32 KHz AFE high speed on-chip oscillator: 4.194 MHz AFE low speed on-chip oscillator: 131.072 KHz

General Purpose I/O Ports

Total: 31 pins CMOS input/output: 20 CMOS input: 4 N-ch open drain Input/output [6V tolerance]: 4 High voltage input/output [VCC tolerance]: 3

Serial interface

CSI (SPI): 2 channels I2C: 1 channel UART: 2 channels Simplified I2C: 2 channels CAN interface (RS-CAN lite): 1 channel

Timer

MCU 16-bit timer: 6 channels MCU 12-bit interval timer: 1 channel

MCU Real time clock: 1 channel

- AFE timer: 2 channels
- AFE timer A: setting range: 125 ms to 64 s
- AFE timer B: setting range : 30.52 us to 125 ms

1.2 Applications

- E-Bike, E-Scooter, Pedal-Assist Bicycle
- Power Tool, Vacuum Cleaner, Drone
- Battery Backup System, Energy Storage System (ESS)

1.3 Description

R01DS0301EJ0201 Rev.2.01 Jun. 7, 2018

Embedded A/D converter AFE 15-bit resolution sigma-delta A/D converter MCU 8/10-bit resolution A/D converter <R> ■ Battery cell voltage and temperature (AN port voltage) detection circuit Monitoring over/under voltage and temperature by Sigmadelta AD converter (AFE) without controlling from MCU Current integration circuit 18-bit resolution sigma-delta A/D converter Impedance measurement circuit Simultaneous measurement of battery voltage and current Over current detection circuit Short circuit current detection Charge overcurrent detection Discharge overcurrent detection Charge wakeup current detection Discharge wakeup current detection Series regulator 3.3V or 5.0V CREG2 Over 100mA output current by external Nch MOSFET Charge and Discharge MOSFET control High side Nch MOSFET drive circuit embedded Programmable MOSFET control by 8-bit PWM Support RTC function To connect External crystal resonator (32.768 kHz) and generate internal clock. <R> Voltage and temperature condition Power supply voltage: VCC = 4.0 to 50 V Operating ambient temperature RAJ240090 supports $T_A = -20$ to $+85^{\circ}C$ RAJ240100 supports $T_A = -40$ to $+85^{\circ}C$ Package Information 64 pin plastic mold LQFP ([Body] 10.0 mm x 10.0 mm, 0.5 mm pitch)

RAJ240090 / RAJ240100 are Renesas Li-ion battery fuel gauge IC (FGIC) which consist of a MCU device and an AFE device in a single package. Pack with a variety of battery management features and Renesas RL78 CPU core which has multiple low power modes and capable of achieving high performance in ultra-low power operation. RAJ240090 / RAJ240100 fuel gauge IC have control firmware stored in embedded flash memory to control attached embedded analog and digital circuits to execute battery voltage / current / temperature measurement, remaining capacity estimation, over current / voltage / temperature protection and other battery management operations.

Table of Contents

1.	Introduction	1
1.1	Features	1
1.2	Applications	1
1.3	Description	1
2.	OUTLINE	1
2.1	Outline of Functions	1
2.2	RAJ240090 Pin Configuration	3
2.3	RAJ240100 Pin Configuration	4
3.	PIN FUNCTIONS	5
3.1	Pin identification	5
3.2	Pin Functions	7
3.3	Pin Block Diagram	10
4.	ELECTRICAL SPECIFICATIONS	22
4.1	Absolute Maximum Ratings	22
4.2	Power supply voltage condition	24
4.3	Supply current characteristics	24
4.4	Oscillator Characteristics	25
4.5	Pin characteristics	26
4.6	AC Characteristics	31
4.7	MCU peripheral circuit characteristics	35
4.8	AFE peripheral circuit characteristics	51
4.9	RAM Data Retention Characteristics	58
4.10) Flash Memory Programming Characteristics	58
4.1 <i>°</i>	Dedicated Flash Memory Programmer Communication (UART)	58
4.12	2 Timing of Entry to Flash Memory Programming Modes	59
5.	Detailed description	60
5.1	Overview	60
5.2	System block diagram	60
5.3	MCU block diagram	61
5.4	AFE block diagram	62
6.	Application Guideline	63
6.1	Typical Application Specification	63
6.2	Typical Application Circuit	64
6.3	Circuit Design Guideline	65
6.4	Layout Guidelines	75
7.	PACKAGE DRAWINGS	80
REVIS	SION HISTORY	81

2. OUTLINE

2.1 Outline of Functions

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0 (PIOR0) is set to "00H".

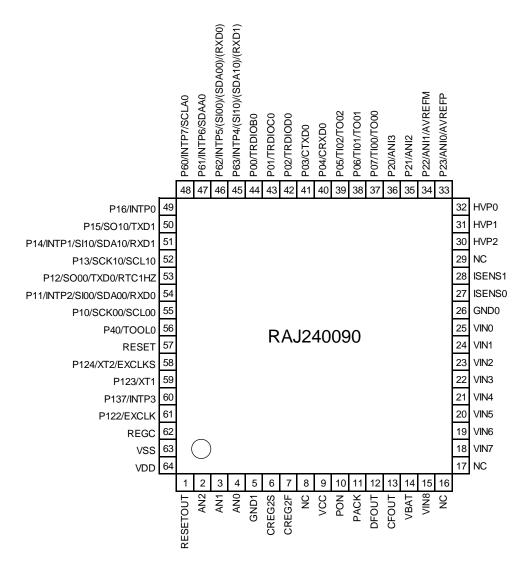
	Item	Description			
Code flas	h memory	128 KB			
Data Flash memory		4 KB			
RAM		7 KB			
Address s	size	1MB			
Main syste	em clock High speed on-chip	HS (high-speed main) mode: 1 to 32 MHz	-		
	Oscillator clock(fIH)	LS (low-speed main) mode: 1 to 8 MHz ,			
Subsyster	m clock	XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz			
Low spee	d on-chip oscillator clock	15 kHz (TYP.)			
General p	ourpose register	8 bits x 32 registers (8 bits x 8 registers x 4 banks)			
Minimum	instruction execution time	0.03125 us(Internal high speed oscillation clock: fIH = 32 MHz)			
		30.5 us (Subsystem clock : f _{SUB} = 32.768 kHz operation)			
Instruction	n set	Data transmission (8/16 bits)			
		Addition and subtraction/logical operations (8/16 bits)			
		Multiplication (8×8 bits,16×16 bits),Division (16÷16 bits,32÷32 bits)			
		Multiplication and Accumulation (16 bits × 16 bits + 32 bits)			
		Rotate, barrel shift, bit manipulation (set, reset, test, Boolean operation) etc.			
I/O Port	CMOS I/O	20			
	CMOS input	4			
	N-ch open-drain I/O	4			
	[6V tolerance)				
	High voltage I/O	3			
Timer	16-bit timer	6 channels			
		(TAU : 4 channels, Timer RD : 2 channels)			
	Watchdog timer	1 channel			
	Real time clock	1 channel			
	12-bit interval timer	1 channel			
	Timer output	Timer outputs: 6 channels			
		PWM outputs: 3 channels			
	RTC output	1 channel			
8/10-bit re	esolution A/D converter	4 channels			
Serial inte	erface	• CSI: 1 channel/UART: 1 channel/simplified I2C: 1 channel			
		CSI: 1 channel/UART: 1 channel/simplified I2C: 1 channel			
	I ² C bus	1 channel			
	Can interface (RS-CAN lite)	1 channel			
Vector	Internal	22			
interrupt	External	15 (6 sources is connected to AFE in the chip)			
source		· · · · · · · · · · · · · · · · · · ·			
Reset		Reset by RESET pin (reset circuit output of AFE connected to RESETOUT)			
		Internal reset by watchdog timer			
		Internal reset by illegal instruction execution Note			
		internal reset by RAM parity error			
		internal reset by illegal memory access			
Dn-chip debug function		Support			

Note The illegal instruction execution is generated when instruction code FFH is executed. Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

Item	Description
PWM	8 bits or 10 bits ×1 for FET control
Sigma-delta A/D converter	15-bit resolution (sigma-delta method)
	Battery Cell voltage (Cell 1 to 8 in RAJ240090, Cell 1 to 10 in RAJ240100)
	Battery Cell total voltage (VIN8 pin in RAJ240090, VIN10 pin in RAJ240100)
	Charge voltage (PACK pin)
	PON pin input voltage
	 Thermistor sensor port with on-chip pull-up 10kohm resistor: 3 channels
	 On-chip simple temperature sensor (temperature range: -20 to 85C)
	Internal reference and supply voltage (MCU and AFE)
Battery cell voltage and temperature (AN	Battery Cell voltage detection
port voltage) detection circuit Note1	Over voltage (Overcharge voltage)
	Under voltage (Overdischarge voltage)
	Temperature (AN port voltage) detection
	Over temperature
	Under temperature
Current integrating circuit	1 channel:18-bit resolution
Current integrating circuit for impedance measurement	1 channel:15-bit resolution
Overcurrent detection circuit and wake up	Discharge short-circuit current detection
current detection circuit	Discharge overcurrent detection
	Charge overcurrent detection,
	Wake up current detection (discharge and charge)
Simple temperature sensor	1 channel
Charge/Discharge FET control circuit	NchFET driver for charge control
	NchFET driver for discharge control
Power on reset circuit	Return from power down mode by detecting voltage and connecting charger
Series regulator	VREG2 : power supply for MCU (3.3 V or 5.0V)
Reset circuit	Series regulator output monitoring (VREG2)
Cell balancing circuit	8 series cells support in RAJ240090
	10 series cells support in RAJ240100
	(On-resistor: 200ohm TYP)
MCU runaway detection circuit	20 bits×1(2 / 4 / 8 / 16 / 32 / 64 [s] to be selected)
AFE On-chip oscillator	4.194 MHz (TYP)
AFE low speed On-chip oscillator	131.972KHz(TYP)
AFE timer	2 channels
	AFE timer A (setting range : 125 ms to 64 s)
	AFE timer B (setting range : 30.52 us to 125 ms)
MCU-AFE communication interface(C2C)	AFE ~ MCU communication (Chip to Chip Interface)
Power supply voltage	VCC = 4.0 to 50 V
Operation ambient temperature Note2	-20 to 85C (REG2T6 bit (bit6 of REG2T)= 0)
	-40 to 85C (REG2T6 bit (bit6 of REG2T)= 1)
Package	64 pin plastic mold LQFP([Body] 10.0mm x 10.0mm , 0.5 mm pitch, 1.4 mm thickness)

<R>

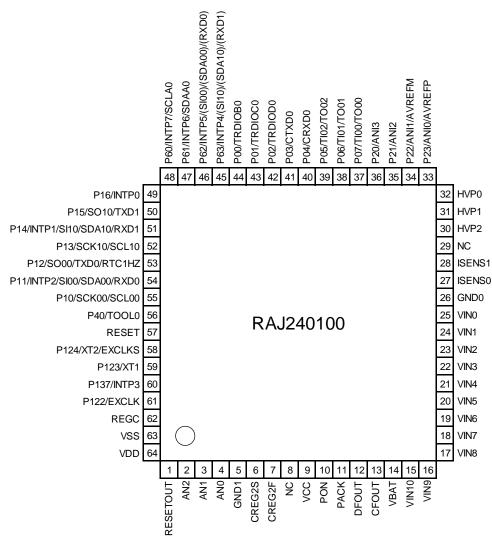
<R>


<R>

<R> Note 1. Battery cell voltage and temperature (AN port voltage) detection circuit is only available in RAJ240100.

Note 2. Operation ambient temperature $T_A = -40$ to 85C is only applicable to RAJ240100.

2.2 RAJ240090 Pin Configuration



· 64 pin plastic mold LQFP ([Body] 10.0mm x 10.0mm , 0.5 mm pitch)

- Caution 1. REGC pin connects to VSS pin through a capacitor (0.47 to 1µ F)
- Caution 2. CREG2 pin connects to GND0/GND1 pin through a capacitor (1 to 4.7uF).
- Remark 1. Pin name refer to [Section 3.1 pin identification].
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

RAJ240090 / RAJ240100

• 64 pin plastic mold LQFP([Body] 10.0mm x 10.0mm , 0.5 mm pitch)

Caution 1. REGC pin connects to VSS pin through a capacitor (0.47 to 1μ F)

Caution 2. CREG2 pin connects to GND0/GND1 pin through a capacitor (1 to 4.7uF).

- **Remark 1.** Pin name refer to [Section 3.1 pin identification].
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

3. PIN FUNCTIONS

3.1 Pin identification

No.	Name	Туре	Description
1	RESETOUT	AO	Reset Output
2	AN2	AIN	Analog Input
3	AN1	AIN	Analog Input
4	ANO	AIN	Analog Input
5	GND1	Р	Ground
6	CREG2S	Р	Regulator Sense
7	CREG2F	Р	Regulator Force
8	NC	NC	No connect
9	VCC	Р	Power supply
10	PON	HVIN	High voltage Port for power on
11	РАСК	HVIN	Charger voltage input
12	DFOUT	HVO	Discharge MOSFET control
13	CFOUT	HVO	Charge MOSFET control
14	VBAT	AIN	Battery voltage input
15	VIN10 for RAJ240100, VIN8 for RAJ240090	AIN	Battery voltage input
16	VIN9 for RAJ240100, NC for RAJ240090	AIN / NC	Battery voltage input (NC for RAJ240090)
17	VIN8 for RAJ240100, NC for RAJ240090	AIN / NC	Battery voltage input (NC for RAJ240090)
18	VIN7	AIN	Battery voltage input
19	VIN6	AIN	Battery voltage input
20	VIN5	AIN	Battery voltage input
21	VIN4	AIN	Battery voltage input
22	VIN3	AIN	Battery voltage input
23	VIN2	AIN	Battery voltage input
24	VIN1	AIN	Battery voltage input
25	VINO	AIN	Battery voltage input
26	GND0	Р	Ground
27	ISENS0	AIN	Analog input for current integration circuit
28	ISENS1	AIN	Analog input for current integration circuit
29	NC	NC	No connect
30	HVP2	HVIO	High Voltage Port
31	HVP1	HVIO	High Voltage Port
32	HVP0	HVIO	High Voltage Port
33	P23 / ANI0 / AVREFP	DIO/AIN	Port2 / Analog Input / Analog Reference Voltage Plus
34	P22 / ANI1 / AVREFM	DIO/AIN	Port2 / Analog Input / Analog Reference Voltage Minus
35	P21 / ANI2	DIO/AIN	Port2 / Analog Input
36	P20 / ANI3	DIO/AIN	Port2 / Analog Input
37	P07 / TI00 / TO00	DIO	Port0 / Timer Input / Timer Output
38	P06 / TI01 / TO01	DIO	Port0 / Timer Input / Timer Output

	T		(2
No.	Name	Туре	Description
39	P05 / TI02 / TO02	DIO	Port0 / Timer Input / Timer Output
40	P04 / CRXD0	DIO	Port0 / CAN Receive Data
41	P03 / CTXD0	DIO	Port0 / CAN Transmit Data
42	P02 / TRDIOD0	DIO	Port0 / Timer Output
43	P01 / TRDIOC0	DIO	Port0 / Timer Output
44	P00 / TRDIOB0	DIO	Port0 / Timer Output
45	P63 / INTP4 / (SI10) / (SDA10) / (RXD1)	DIO	Port6 / External Interrupt Input / Serial Data Input / Serial Data Input/Output / Receive Data
46	P62 / INTP5 / (SI00) / (SDA00) / (RXD0)	DIO	Port6 / External Interrupt Input / Serial Data Input / Serial Data Input/Output / Receive Data
47	P61 / INTP6 / SDAA0	DIO	Port6 / External Interrupt Input / I2C Bus data I/O
48	P60 / INTP7 / SCLA0	DIO	Port6 / External Interrupt Input / I2C Bus clock I/O
49	P16 / INTP0	DIO	Port1 / External Interrupt Input
50	P15 / SO10 / TXD1	DIO	Port1 / Serial Data Output / Transmit Data
51	P14 / INTP1 / SI10 / SDA10 / RXD1	DIO	Port1 / External Interrupt Input / Serial Data Input / Serial Data Input/Output / Receive Data
52	P13 / SCK10 / SCL10	DIO	Port1 / Serial Clock Input/Output
53	P12 / SO00 / TXD0 / RTC1HZ	DIO	Port1 / Serial Data Output / Transmit Data / Real-time Clock Correction Clock (1 Hz) Output
54	P11 / INTP2 / SI00 / SDA00 / RXD0	DIO	Port1 / External Interrupt Input / Serial Data Input / Serial Data Input/Output / Receive Data
55	P10 / SCK00 / SCL00	DIO	Port1 / Serial Clock Input/Output
56	P40 / TOOL0	DIO	Port4 / Data Input/Output for Tool
57	RESET	DIN	Reset Input for MCU
58	P124 / XT2 / EXCLKS	DI	Port12 / Crystal Oscillator Input / External Clock Input
59	P123 / XT1	DI	Port12 / Crystal Oscillator Input
60	P137 / INTP3	DI	Port13 / External Interrupt Input
61	P122/EXCLK	DI	Port12 / External Clock Input
62	REGC	Р	Regulator Capacitance
63	VSS	Р	Ground
64	VDD	Р	Power Supply

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

HVO: high voltage output	DIO:	digital I/O
HVIN: high voltage input	DIN:	digital input
HVIO: high voltage input/output	AIN:	analog input
P: power	AO:	analog output

3.2 Pin Functions

3.2.1 Pin type and alternate functions

Function name	Pin Type	I/O	After Reset Release	Alternate Function	Function
P00	7-1-7	I/O	Input port	TRDIOB0	Port 0.
P01	7-1-7			TRDIOC0	8-bit I/O port.
P02	7-1-7			TRDIOD0	Input/output can be specified in 1-bit unit.
P03	8-1-4			CTXD0	Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P04	8-1-4			CRXD0	Input of P03 and P04 can be set to TTL input
P05	7-1-3			TI02/TO02	buffer.
P06	7-1-3			TI01/TO01	Output of P03 and P04 can be set to N-ch open
P07	7-1-3			TI00/TO00	drain output (VDD tolerance).
P10	8-1-4	I/O	Input port	SCK00/SCL00	Port 1.
P11	8-1-4			INTP2/SI00/SDA00/RXD0	7-bit I/O port.
P12	7-1-4			SO00/TXD0/RTC1HZ	Input/output can be specified in 1-bit unit.
P13	8-1-4			SCK10/SCL10	Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P14	8-1-4			INTP1/SI10/SDA10/RXD1	Input of P10 to P14 can be set to TTL input
P15	7-1-4			SO10/TXD10	buffer.
P16	7-1-4			INTP0	Output of P10 to P16 can be set to N-ch open drain output (VDD tolerance).
P20	4-3-3	I/O	Analog	ANI3	Port 2.
P21	4-3-3		function	ANI2	4-bit I/O port.
P22	4-3-3			ANI1/AVREFM	Input/output can be specified in 1-bit unit.
P23	4-3-3			ANI0/AVREFP	Can be set to analog input ^{Note 1.}
P30	7-1-3	I/O	Input port	INTP13	Port 3. Note 2.
P31	7-1-3			INTP12	4-bit I/O port.
P32	7-1-3			INTP11	Input/output can be specified in 1-bit unit.
P33	7-1-3			INTP10	Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P40	7-1-3	I/O	Input port	TOOLO	Port 4. 1-bit I/O port. Input/output can be specified in 1-bit unit. Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P60	12-1-2	I/O	Input port	INTP7/SCLA0	Port 6.
P61	12-1-2			INTP6/SDAA0	4-bit I/O port.
P62	12-1-2			INTP5/(SI00)/(SDA00)/(RXD0)	Input/output can be specified in 1-bit unit.
P63	12-1-2			INTP4/(SI10)/(SDA10)/(RXD1)	Output of P60 to P63 can be set to N-ch open drain output (6.0V tolerance).
P70	7-1-3	I/O	Input port	INTP9	Port 7. Note 2.
P71	7-1-3			INTP8	8-bit I/O port.
P72	7-1-3			EXBSEL	Input/output can be specified in 1-bit unit. Use of an on-chip pull-up resistor can be
P73	7-1-3			EXBCK	specified by a software setting at input port.
P74	7-1-3			EXBO0/EXBI0	
P75	7-1-3			EXBO1/EXBI1	
P76	7-1-3			EXBO2/EXBI2	
P77	7-1-3			EXBO3/EXBI3	
P122	2-2-2	input	Input port	EXCLK	Port 12.
P123	2-2-1			XT1	3-bit input-only port.
P124	2-2-1			XT2/EXCLKS	
P137	2-1-2	input	Input port	INTP3	Port 13. 1-bit input-only port.
RESET	2-1-1	input	-	-	Input-only pin for external reset. Connect to VDD directly or via a resistor wher external reset is not used.

Note 1. Each pin can be configured as digital or analog pin by setting the port mode in the control register x (PMCx) (Can be specified in 1-bit units).

Note 2. Connected to internal AFE circuit.

3.2.2 External Pin Functions

Category	Pin name	I/O	Function	
Power supply	VCC	_	Power supply input Apply power supply voltage to VCC pin from a charger or battery.	
	GND0、GND1	-	Device ground input. Connect the negative input terminal of lithium-ion ba 1 to the GND0 and GND1 pins	
	CREG2F	—	Series regulator force port	
	CREG2S	-	Series regulator sense port Connect to GND0 and GND1 via a capacitor (1uF to 4.7uF)	
	VDD	-	Positive power supply for MCU Connect to CREG2	
	VSS	-	Ground input for MCU	
			Connect the negative input terminal of lithium-ion battery 1 to the GND0 and GND1 pins	
	REGC Note 1.	-	Pin for connecting regulator output stabilization capacitance for internal operation. Connect this pin to VSS via a capacitor (0.47 to 1 uF).	
			Also, use a capacitor with good characteristics, since it is used to stabilize internal voltage.	
RESET	RESET	Input	This is the active-low system reset input pin for MCU.	
	RESETOUT	output	This is the active-low system reset output pin for AFE.	
TOOL0	TOOL0 Note 2	input	Data I/O for flash memory programmer/debugger. Connect to the VDD via an external pull-up resistor in the on chip debug mode	
Serial interface	RxD0, RxD1	input	Serial data input pins of serial interface UART0 to UART1	
(UART0, UART1)	TxD0, TxD1	output	Serial data output pins of serial interface UART0 to UART1	
Serial interface	SCK00,SCK10	I/O	Serial clock I/O pins of serial interface CSI00 and CSI10	
(CSI00, CSI10)	SI00, SI10	input	Serial data input pins of serial interface CSI00 and CSI10	
	SO00, SO10	output	Serial data output pins of serial interface CSI00 and CSI10	
Serial interface	SCL00, SCL10	output	Serial clock output pins of serial interface IIC00 and IIC10	
(IIC00, IIC10)	SDA00, SDA10	I/O	Serial data I/O pins of serial interface IIC00 and IIC10	
Serial interface	SCLA0	I/O	Serial clock I/O pins of serial interface IICA0	
(IICA0)	SDAA0	I/O	Serial data I/O pins of serial interface IICA0,	
CAN-BUS interface	CRXD0	input	CAN serial data input	
	CTXD0	output	CAN serial data output	
A/D converter	AN0, AN1, AN2	input	AFE A/D converter analog input	
	ANIO, ANI1, ANI2, ANI3	input	MCU A/D converter analog input	
	AVREFP	input	A/D converter reference voltage (+ side).	
	AVREFM	input	A/D converter reference voltage (- side).	
Current integration circuit and overcurrent detection circuit	ISENS0, ISENS1	input	Analog input for current integration circuit and over current detection circuit	
Timer	TI00-TI02	input	The pins for inputting an external count clock/capture trigger to 16-bit timers 00 to 02	
	TO00-TO02	output	Timer output pins of 16-bit timers 00 to 02	
	TRDIOB0 TRDIOC0 TRDIOD0	I/O	Timer RD input/output	
	RTC1HZ	output	Real-time clock supports clock (1 Hz) output	

			(2		
Category	Pin name	I/O	Function		
High voltage I/O port	HVP0, HVP1, HVP2	I/O	High voltage I/O in correspondence with VCC tolerance		
Subsystem clock	tem clock XT1, XT2 ^{Note 3} – Resonator connection for subsystem clock		Resonator connection for subsystem clock		
External clock	EXCLK	Input	External clock input for main system clock		
	EXCLKS	input	External clock input for subsystem clock		
External interrupt input	INTP0 to INTP13	input	nterrupt request input pin. INTP8 to INTP13 connects interrupt request signal of AFE in the package and do not connect to any pin		
Power on circuit	PON	input	Power on input for release from power down state		
Charger connection detect	PACK	Input	Charger voltage input and source voltage of discharge FET drive port (DFOUT)		
Battery connection detect	VBAT	input	Sense voltage input pin for most positive cell and source voltage for charge FET drive port (CFOUT)		
Battery voltage detection circuit	VIN10 Note 4	input	The positive input terminal of lithium-ion battery 10.		
	VIN9 Note 4	Input	The negative input terminal of lithium-ion battery 10 and the positive input terminal of lithium-ion battery 9		
	VIN8	Input	The negative input terminal of lithium-ion battery 9 and the positive input terminal of lithium-ion battery 8		
	VIN7	Input	The negative input terminal of lithium-ion battery 8 and the positive input terminal of lithium-ion battery 7		
	VIN6	Input	The negative input terminal of lithium-ion battery 7 and the positive input terminal of lithium-ion battery 6		
	VIN5	Input	The negative input terminal of lithium-ion battery 6 and the positive input terminal of lithium-ion battery 5		
	VIN4	Input	The negative input terminal of lithium-ion battery 5 and the positive input terminal of lithium-ion battery 4		
	VIN3	Input	The negative input terminal of lithium-ion battery 4 and the positive input terminal of lithium-ion battery 3		
	VIN2	Input	The negative input terminal of lithium-ion battery 3 and the positive input terminal of lithium-ion battery 2		
	VIN1	Input	The negative input terminal of lithium-ion battery 2 and the positive input terminal of lithium-ion battery 1		
	VIN0	Input	The negative input terminal of lithium-ion battery 1		
FET control output	DFOUT	Output	ON/OFF signal output pin for discharge FET.		
	CFOUT	Output	ON/OFF signal output pin for charge FET.		
Communication between AFE and MCU	P72	input	Control signal of communication between AFE and MCU with setting to output port. P72 is connected to AFE in a package and not external pin.		
	EXBCK	Output	Clock signal of communication between AFE and MCU		
	EXBD0-3	I/O	Data signal of communication between AFE and MCU		

Note 1. REGC is not external power supply pin. (Do not draw current from REGC.)

Note 2. After reset release, the connection between P40/TOOL0 and the operating mode are as follows.

P40/TOOL0	Operation Mode
VDD	Normal operation mode
0V	Flash memory programming mode

Note 3. Figure 3-1 shows an example of the external circuit for the XT1 oscillator

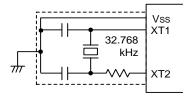
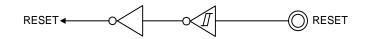
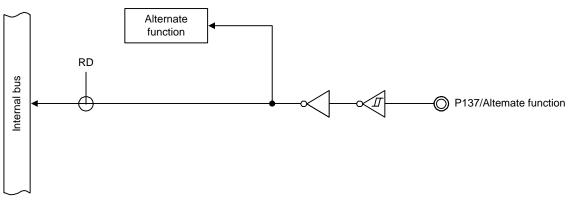
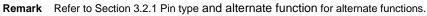
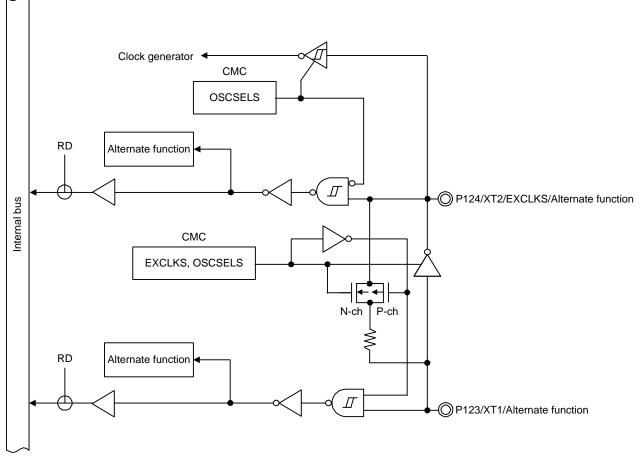



Figure 3-1 Example of External Circuit for XT1 Oscillator


Note 4. VIN10 pin and VIN9 pin are only applicable to RAJ240100.



3.3 Pin Block Diagram



Remark Refer to Section 3.2.1 Pin type and alternate function for alternate functions.

Figure 3-4 Pin Block Diagram for Pin type 2-2-1

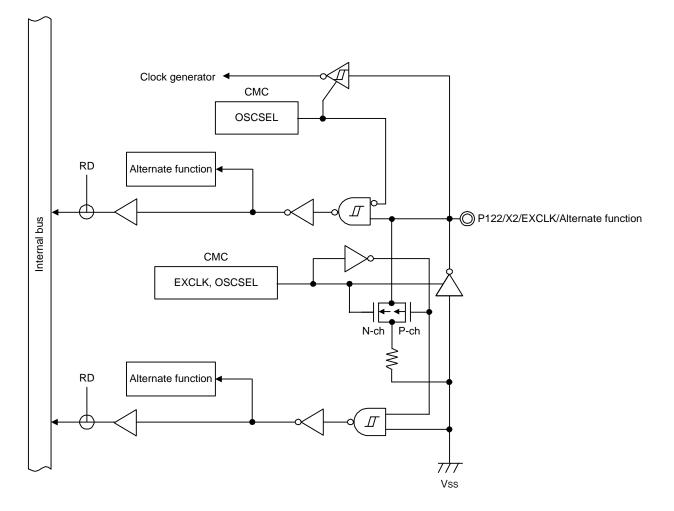
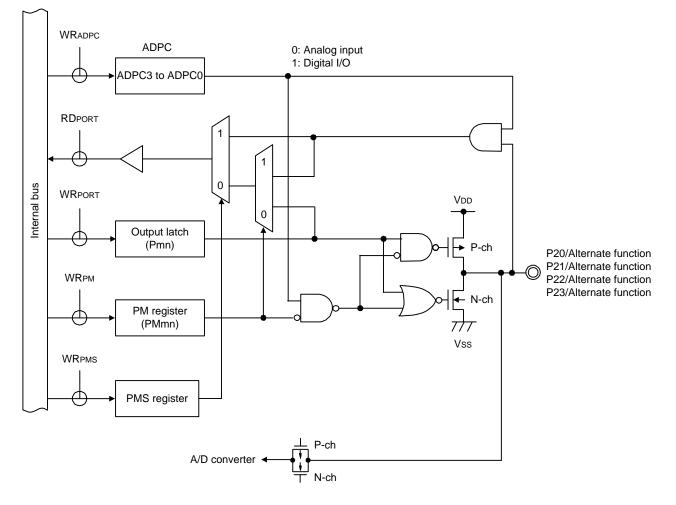
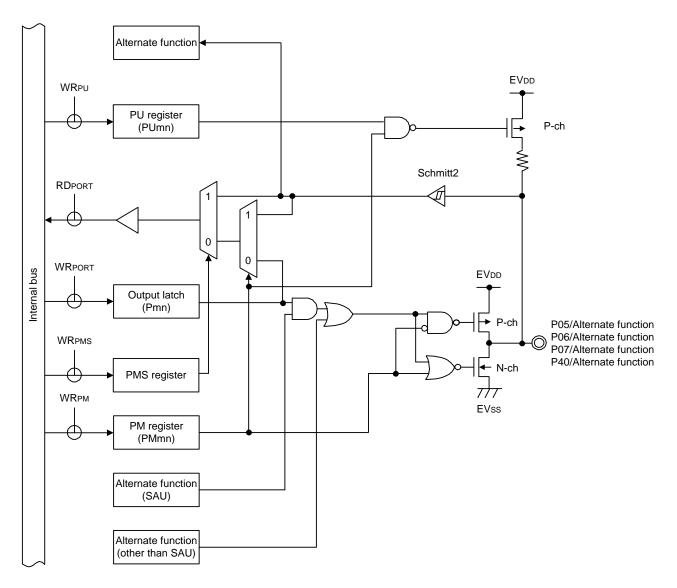



Figure 3-5 Pin Block Diagram for Pin type 2-2-2



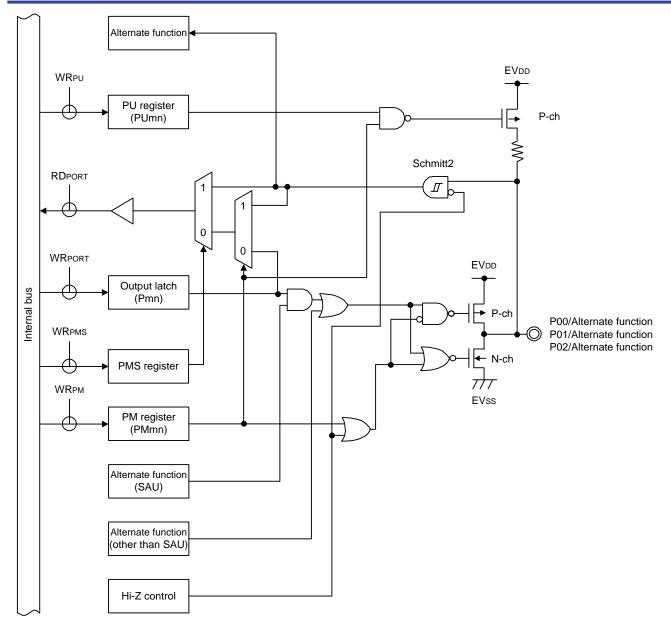
Remark Refer to Section 3.2.1 Pin type and alternate function for alternate functions.

Figure 3-6 Pin Block Diagram for Pin type 4-3-3



Remark Refer to Section 3.2.1 Pin type and alternate function for alternate functions.

Figure 3-7 Pin Block Diagram for Pin type 7-1-3



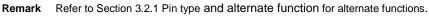


Figure 3-8 Pin Block Diagram for Pin type 7-1-4

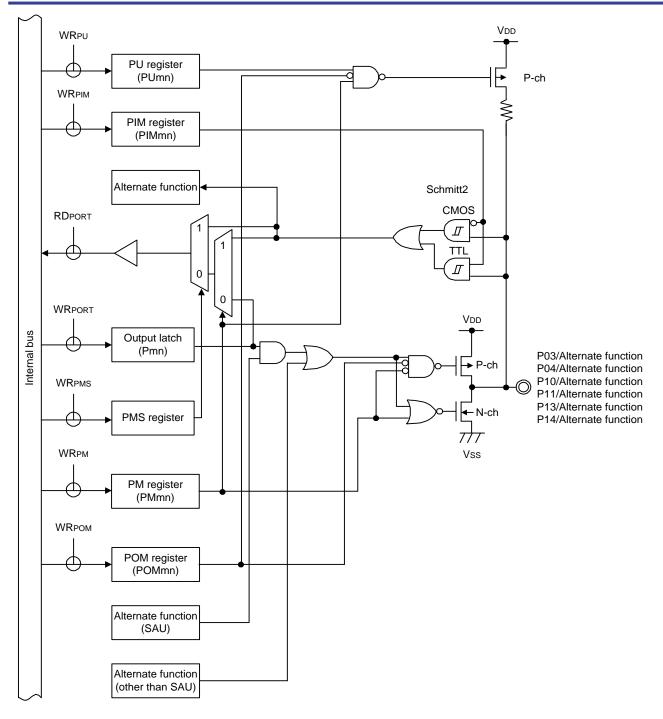
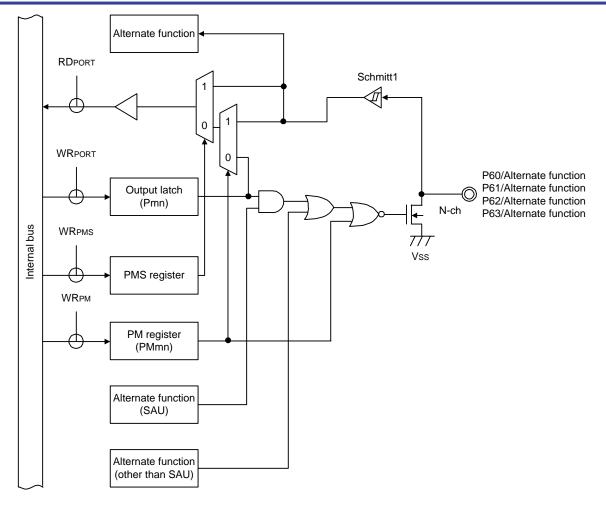


Figure 3-9 Pin Block Diagram for Pin type 7-1-7



Remark Refer to Section 3.2.1 Pin type and alternate function for alternate functions.

Figure 3-10 Pin Block Diagram for Pin type 8-1-4

Remark Refer to Section 3.2.1 Pin type and alternate function for alternate functions.

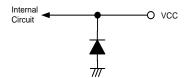


Figure 3-12 Pin Block Diagram for VCC Pin

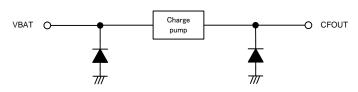


Figure 3-13 Pin Block Diagram for VBAT and CFOUT Pin

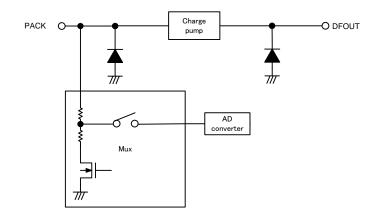


Figure 3-14 Pin Block Diagram for VPACK and DFOUT Pin

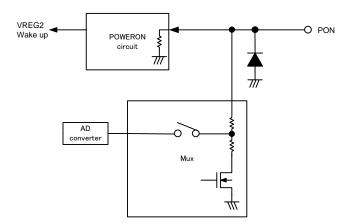
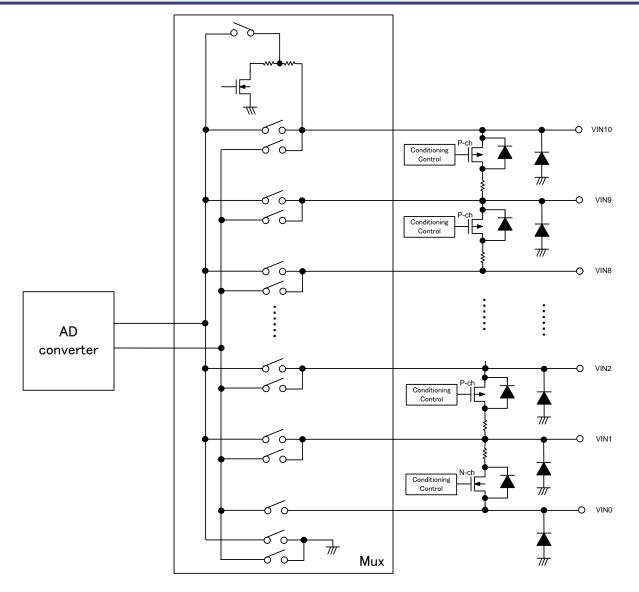



Figure 3-15 Pin Block Diagram for PON Pin

- Caution 1. VIN10 pin and VIN9 pin are only applicable to RAJ240100.
- Caution 2. For RAJ240090, VIN8 pin is connected to ladder resistors.

Figure 3-16 Pin Block Diagram for VIN10 to VIN0 Pin

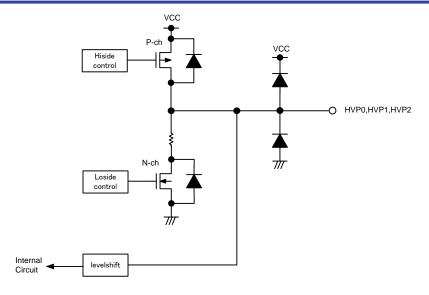


Figure 3-17 Pin Block Diagram for HVP0, HVP1 and HVP2 Pin

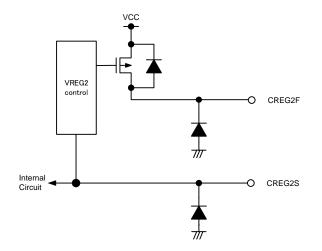


Figure 3-18 Pin Block Diagram for CREG2F and CREG2S Pin

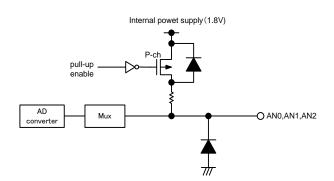


Figure 3-19 Pin Block Diagram for AN0, AN1 and AN2 Pin

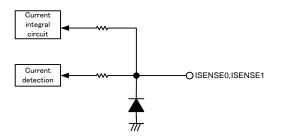
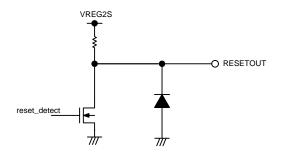
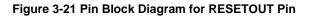




Figure 3-20 Pin Block Diagram for ISENS0 and ISENS1 Pin

<R> 4. ELECTRICAL SPECIFICATIONS

Caution This product has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

Remark 1. Specifications for VIN10 pin and VIN9 pin are only applicable to RAJ240100. **Remark 2.** Operation ambient temperature $T_A = -40$ to 85C is only applicable to RAJ240100.

4.1 Absolute Maximum Ratings

Absolute Maximum Ratings

Parameter	Symbols		Conditions	Ratings	Unit
Supply voltage	Vcc	VCC	Contailone	-0.5 to +60.0	V
Cuppiy Vollage	VDD	VDD		-0.5 to +6.5	v
	GND	GND0, GN	ID1. VSS	-0.5 to 0.3	v
CREG2 pin input voltage	VCREG2			-0.5 to +60.0	V
on 202 phillipat ronago	1011202	CREG2S		-0.3 to 6.5 Note 2	V
REGC pin input voltage	Viregc	REGC		-0.3 to 2.8 and	V
				-0.3 to (VDD+0.3) Note 1	-
Input voltage	VI1		7, P10 to P16, P20 to 23, L0), P122 to P124, P137, RESET	-0.3 to (VDD+0.3) Note 3	V
	VI2	P60 to P63	B(N-ch open-drain)	-0.3 to +6.5	V
	VIN-H1		19, VIN8, VIN7, VIN6, VIN5, VIN4, 2, VIN1, VBAT, PACK, PON,	-0.5 to +60.0	V
	VIN-H2	HVP0, HV	P1, HVP2	-0.5 to (VDD+0.3) Note 5	V
	VIN-B	VIN7 to VI	/IN9, VIN9 to VIN8, VIN8 to VIN7, N6, VIN6 to VIN5, VIN5 to VIN4, N3, VIN3 to VIN2, VIN2 to VIN1, N0	-0.5 to +6.5	V
	VIN-M	VIN0		-0.5 to +5.0	V
	VIN-L	AN0, AN1,	AN2, ISENS0, ISENS1	-0.5 to +2.0	V
	Vai	ANI00 to A	NI03	-0.3 to VDD +0.3 and -0.3 to AVREF(+) +0.3 Notes 3, 4	V
Output voltage	Vo1	P00 to P07, P10 to P16, P20 to 23, P40 (TOOL0), P123, P124, RESETOUT		-0.3 to (VDD+0.3) Note 3	V
	Vo-н	CFOUT, D	FOUT, HVP0, HVP1, HVP2	-0.5 to +60.0	V
High-level output current	Іон1	Per pin	P00 to P07, P10 to P16, P40 (TOOL0)	-40	mA
		Total of all pins	P00 to P07, P10 to P16, P40 (TOOL0)	-70	mA
	Іон2	Per pin	P20 to P23	-0.5	mA
		Total of all pins	P20 to P23	-2.0	mA
Low-level output current	IOL1	Per pin	P00 to P07, P10 to P16, P40 (TOOL0)	+40	mA
		Total of all pins	P00 to P07, P10 to P16, P40 (TOOL0), P60 to P63	+70	mA
Power consumption	Pd	Topr = 25 C		300	mW
Operating ambient	ТА	REG2T6 bit = 0		-20 to +85	С
Temperature	T _{AL}	REG2T6 bit = 1		-40 to +85	С
Storage temperature	Tstg	-		-65 to +150	С

(Note, Caution and Remark are listed on next page.)

RAJ240090 / RAJ240100

- Note 1. Connect the REGC pin to VSS via a capacitor (0.47 to 1uF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
- Note 2. Connect the CREG2 pin to GND0 or GND1 via a capacitor (2.2uF). This value regulates the absolute maximum rating of the CREG2 pin.

Note 3. Must be 6.5V or lower.

Note 4. Do not exceed AVREF (+) + 0.3V in case of A/D conversion target pin.

Note 5. Must be 60V or lower.

Caution Product quality may degrade if the absolute maximum rating has been exceeded. The absolute maximum ratings are rated values where the product is on the verge of suffering physical damage, therefore the product must be used within conditions that ensure the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. GND (GND0, GND1 and VSS): Reference voltage.

4.2 Power supply voltage condition

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply	VCC, VBAT		4.0	-	50.0	V
	VDD		2.7	-	5.5	V
	GND	GND0, GND1, VSS	-	0.0	-	V

4.3 Supply current characteristics

 $(T_A = -40/-20 \text{ to } +85C, 4.0V \le VCC \le 50V, VDD = CREG2, GND0 = GND1 = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power down mode current 1	IPD	VCC=35V			2.0	uA
Power down mode current 2 (Low voltage)	IPDL	VCC=4.0V			1.0	uA
Sleep mode current 1	ISLP1	$-20C \le T_A \le 85C$, REG2T6 bit = 0, MCU operation mode: STOP mode ALOCO = ON, AOCO = OFF CD = ALL ON, AFE Timer = ON, AFE WDT = ON, CFOUT = L, DFOUT = L, AD(AFE) = OFF, CC = OFF		25.0	50.0	uA
	ISLP1L	$\label{eq:tau} \begin{array}{l} -40C \leq T_A \leq 85C, \mbox{ REG2T6 bit = 1,} \\ MCU \mbox{ operation mode: STOP mode} \\ ALOCO = ON, \mbox{ AOCO = OFF} \\ CD = ALL \mbox{ ON, AFE Timer = ON,} \\ AFE \mbox{ WDT = ON, CFOUT = L, DFOUT = L,} \\ AD(AFE) = OFF, \mbox{ CC = OFF} \end{array}$		35	70.0	uA
Sleep mode current 2	ISLP2	-20C \leq T _A \leq 85C, REG2T6 bit = 0, MCU operation mode: STOP mode ALOCO = ON, AOCO = OFF CD = ALL ON, AFE timer = ON, AFE WDT = ON, CFOUT = H, DFOUT = H, AD(AFE) = OFF, CC = OFF		50.0	100.0	uA
	ISLP2L	-40C \leq T _A \leq 85C, REG2T6 bit = 1, MCU operation mode: STOP mode ALOCO = ON, AOCO = OFF CD = ALL ON, AFE timer = ON, AFE WDT = ON, CFOUT = H, DFOUT = H, AD(AFE) = OFF, CC = OFF		60	120.0	uA
Normal mode current	Ілом	MCU operation mode: LS (Low-Speed main) mode, fHOCO=8MHz ALOCO = ON, AOCO = ON CD = ALL ON, AFE Timer = ON, AFE WDT = ON, CFOUT = H, DFOUT = H, AD(AFE) = ON, CC = ON		2.0	3.0	mA

Caution 1. After trimming.

Caution 2. When RAJ240100 is used in T_A = -40 to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

4.4 Oscillator Characteristics

4.4.1 XT1 Characteristics

 $(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution When RAJ240100 is used in T_A = -40 to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

4.4.2 MCU On-chip oscillator characteristics

 $(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Note 1, 2	fін		1		32	MHz
High-speed on-chip oscillator clock frequency accuracy		$-20C \le T_A \le 85C$	-1.0		+1.0	%
		$-40C \le T_A \le 85C$	-1.5		+1.5	%
Low-speed on-chip oscillator clock frequency	fı∟			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Caution When RAJ240100 is used in T_A = -40 to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

4.4.3 AFE On-chip oscillator characteristics

 $(T_A = -40/-20 \text{ to } +85C, 4.0V \le VCC \le 50V, \text{GND0} = \text{GND1} = VSS = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
AFE on-chip oscillator clock frequency	faoco		-	4.194	-	MHz
AFE on-chip oscillator clock frequency accuracy			-2	-	+2	%
AFE on-chip oscillator clock frequency stabilization wait time			-	-	(50)	us
AFE Low-speed on-chip oscillator clock frequency	faloco		-	131.072	-	KHz
AFE Low-speed on-chip oscillator clock frequency accuracy			-5	-	+5	%
AFE Low-speed on-chip oscillator clock frequency stabilization wait time			-	-	(50)	us

Caution 1. After trimming.

Caution 2. When RAJ240100 is used in $T_A = -40$ to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

Remark Values in brackets are design value.

4.5 Pin characteristics

(1/5)

$(T_{h} = -40/-20 \text{ to } +850)/4$.0V ≤ VCC ≤ 50V, 2.7V ≤	< VDD < 5.5 V GND0 =	GND1 = VSS = 0V
(1A = -40/-20 10 + 050, 4	.00 = 000 = 500, 2.70 =	$\leq 000 \leq 0.50$, GMD0 -	GNDT = V33 = 0V

Parameter	Symbol	Condi	Conditions		TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00 to P07, P10 to P16, P40	2.7V ≤ VDD ≤ 5.5V			-10.0 Note 2	mA
		Total of P00 to P07,	4.0V ≤ VDD ≤ 5.5V			-55.0	mA
		P10 to P16, P40 (When duty ≤ 70% ^{Note 3})	2.7V ≤ VDD < 4.0V			-10.0	mA
		Total of all pins (When duty ≤70% ^{Note 3})	2.7V ≤ VDD ≤ 5.5V			-100.0	mA
	Іон2	Per pin for P20 to P23	2.7V ≤ VDD ≤ 5.5V			-0.1 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	2.7V ≤ VDD ≤ 5.5V			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current from pins = $(IOH \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IOH = -10.0 mA
 - Total output current from pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the allowable current flow into one pin does not change with the duty factor. A current higher than the absolute maximum rating must not flow into any one pin.

Caution 1. P03, P04, and P10 to P16 do not output high level in N-ch open-drain mode. Caution 2. When RAJ240100 is used in $T_A = -40$ to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

(2/5)

 $(T_A = -40/-20 \text{ to } +85C, 4.0V \le VCC \le 50V, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$

Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
Output current, low Note 1	tput current, low Note 1 IOL1					20.0 Note 2	mA
		Per pin for P60-P63				15.0 Note 2	mA
		Total of P00 to P07,	4.0V ≤ VDD ≤ 5.5V			70.0	mA
		P10 to P16, P40 (When duty ≤ 70% ^{Note 3})	2.7V ≤ VDD < 4.0V			15.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				150.0	mA
	IOL2	Per pin for P20 to P23				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	2.7V ≤ VDD ≤ 5.5V			5.0	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the VSS pins.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOL \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IOL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the allowable current flow into one pin does not change with the duty factor. A current higher than the absolute maximum rating must not flow into any one pin.

Caution When RAJ240100 is used in T_A = -40 to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

(T_A = -40/-20 to +85C, 4.0V ≤ VCC ≤ 50V, 2.7V ≤ VDD ≤ 5.5V, GND0 = GND1 = VSS = 0V)

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P02, P05 to P07, P10 to P16, P40	Normal input buffer	0.8 VDD		VDD	V
	VIH2	P03, P04, P10, P11, P13, P14	TTL input buffer 4.0V ≤ VDD ≤ 5.5V	2.2		VDD	V
			TTL input buffer 3.3V ≤ VDD < 4.0V	2.0		VDD	V
			TTL input buffer 2.7V ≤ VDD < 3.3V	1.5		VDD	V
	Vінз	P20 to P23	0.7 VDD		VDD	V	
	VIH4	P60 to P63		0.7 VDD		6.0	V
	VIH5	P122 to P124, P137, RESET		0.8 VDD		VDD	V
	VIH6	P03, P04	0.8 VDD		VDD	V	
Input voltage, low	VIL1	P00 to P02, P05 to P07, P10 to P16, P40	Normal input buffer	0		0.2 VDD	V
	VIL2	P03, P04, P10, P11, P13, P14	TTL input buffer 4.0V ≤ VDD ≤ 5.5V	0		0.8	V
			TTL input buffer 3.3V ≤ VDD < 4.0V	0		0.5	V
			TTL input buffer 2.7V ≤ VDD < 3.3V	0		0.32	V
	VIL3	P20 to P23		0		0.3 VDD	V
	VIL4	P60 to P63		0		0.3 VDD	V
	VIL5	P122 to P124, P137, RESET		0		0.2 VDD	V
	VIL6	P03, P04	$3.0V \le VDD \le 5.5V$	0		0.5 VDD	V
			2.7V ≤ VDD < 3.0V	0		0.4 VDD	V

Caution 1. The maximum value of VIH of pins P03, P04, P10 to P16 is VDD, even in the N-ch open-drain mode. Caution 2. When RAJ240100 is used in $T_A = -40$ to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Output voltage, high	VOH1	P00 to P07,	$4.0V \le VDD \le 5.5V$,	VDD - 1.5			V
		P10 to P16, P40	IOH1 = -10.0mA				
			4.0V ≤ VDD ≤ 5.5V,	VDD - 0.7			V
			IOH1 = -3.0mA				
			2.7V ≤ VDD ≤ 5.5V,	VDD - 0.5			V
			IOH1 = -1.5mA				
	Voh2	P20 to P23	2.7V ≤ VDD ≤ 5.5V,	VDD - 0.5			V
			IOH2 = -100uA				
Output voltage, low	VOL1	P00 to P07,	$4.0V \le VDD \le 5.5V$,			1.3	V
		P10 to P16, P40	IOL1 = 20.0mA				
			$4.0V \le VDD \le 5.5V$,			0.7	V
			IOL1 = 8.5mA				
			2.7V ≤ VDD ≤ 5.5V,			0.6	V
			IOL1 = 3.0mA				
			2.7V ≤ VDD ≤ 5.5V,			0.4	V
			IOL1 = 1.5mA				
			2.7V ≤ VDD ≤ 5.5V,			0.4	V
			IOL1 = 0.6mA				
			2.7V ≤ VDD ≤ 5.5V,			0.4	V
			IOL1 = 0.3mA				
	VOL2	P20 to P23	1.6V ≤ VDD ≤ 5.5V,			0.4	V
			IOL2 = 400uA				
	Vol3	P60 to P63	$4.0V \le VDD \le 5.5V$,			2.0	V
			IOL3 = 15.0mA				
			$4.0V \le VDD \le 5.5V$,			0.4	V
			IOL3 = 5.0mA				
			2.7V ≤ VDD ≤ 5.5V,			0.4	V
			IOL3 = 3.0mA				
			1.8V ≤ VDD ≤ 5.5V,			0.4	V
			IOL3 = 2.0mA				
			1.6V ≤ VDD ≤ 5.5V,			0.4	V
			IOL3 = 1.0mA				

(T_A = -40/-20 to +85C, 4.0V ≤ VCC ≤ 50V, 2.7V ≤ VDD ≤ 5.5V, GND0 = GND1 = VSS = 0V)

(4/5)

Caution 1. P03, P04, P10 to P16 do not output high level in N-ch open-drain mode.

Caution 2. When RAJ240100 is used in $T_A = -40$ to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

(5/5)

 $(T_A = -40/-20 \text{ to } +85C, 4.0V \le VCC \le 50V, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P16, P40	VI = VDD				1	uA
	ILIH2	P20 to P23, P137, RESET	VI = VDD				1	uA
	Іцнз	P122 to P124	VI = VDD	In input port or external clock input			1	uA
				In resonator connection			10	uA
Input leakage current, low	ILIL1	P00 to P07, P10 to P16, P40	VI = VSS				-1	uA
	ILIL2	P20 to P23, P137, RESET	VI = VSS				-1	uA
	Ilil3	P122 to P124	VI = VSS	In input port or external clock input			-1	uA
				In resonator connection			-10	uA
On-chip pull-up resistance	Ru	P00 to P07, P10 to P16, P40	VI = VSS, In	input port	10	20	100	kΩ
	RUA	AN0, AN1, AN2			7.5	10	12.5	kΩ
	RUAR	RESETOUT				20		kΩ

Caution When RAJ240100 is used in $T_A = -40$ to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

Remark 1. Unless specified, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. Regarding pin characteristics of CFOUT, DFOUT, refer to Section 4.8.6 Charge/discharge FET control circuit characteristics.

Remark 3. Regarding pin characteristics of VIN1 to VIN10 refer to Section 4.8.2 Multiplexer.

Remark 4. Regarding pin characteristics of HVP0 to HVP2 refer to Section 4.8.1 High-voltage port characteristics.

4.6 AC Characteristics

(1/2)

 $(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$

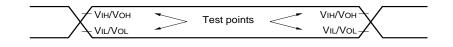
Parameter	Symbol	C	MIN.	TYP.	MAX.	Unit	
Instruction cycle (minimum instruction execution time)	Тсү	Main system clock (fmain) operation	HS (high-speed main) mode	0.03125		1	us
			LS (low-speed main) mode	0.125		1	us
			LV (low-voltage main) mode	0.25		1	us
		Subsystem clock (fsub) operation		28.5	30.5	31.3	us
		In the self-programming mode	HS (high-speed main) mode	0.03125		1	us
			LS (low-speed main) mode	0.125		1	us
			LV (low-voltage main) mode	0.25		1	us
External system clock frequency	fexs			32		35	kHz
External system clock input high-level width, low-level width	tEXHS, tEXLS			13.7			us
TI00 to TI02 input high-level width, low-level width	t⊤iH, tTiL			1/fмск +10			ns

Caution When RAJ240100 is used in $T_A = -40$ to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

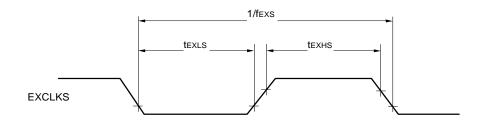
Remark fMCK : Timer array unit operation clock frequency

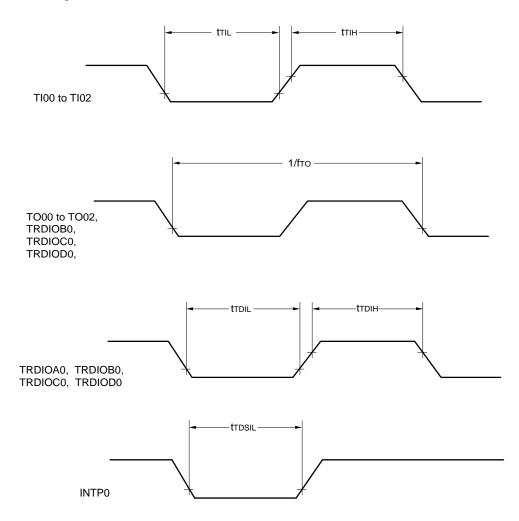
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

(2/2)

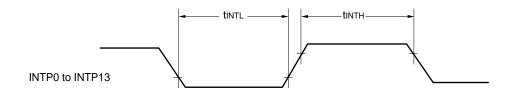

(T_A = -40/-20 to +85C, 2.7V \leq VDD \leq 5.5V, GND0 = GND1 = VSS = 0V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width			3/fclк			ns	
Timer RD forced cutoff signal	t TDSIL	P16/INTP0	2MHz < fclк ≤ 32MHz	1			us
input low-level width			fclk ≤ 2 MHz	1/fclк + 1			
TO00 to TO02,	fто	HS (high-speed main) mode	4.0V ≤ VDD ≤ 5.5V			16	MHz
TRDIOB0, TRDIOC0, TRDIOD0			2.7V ≤ VDD < 4.0V			8	MHz
output frequency		LS (low-speed main) mode	2.7V ≤ VDD ≤ 5.5V			4	MHz
		LV(low-voltage main) mode	2.7V ≤ VDD ≤ 5.5V			2	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTP13	1.6V ≤ VDD ≤ 5.5V	1			us
RESET low-level width trsL				10			us

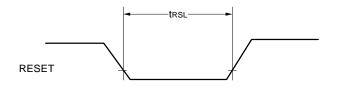

Caution When RAJ240100 is used in $T_A = -40$ to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".


AC Timing Test Points

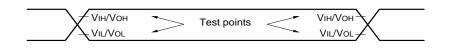
External System Clock Timing



TI/TO Timing



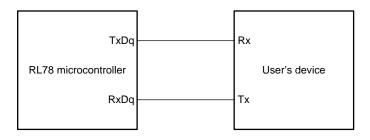
Interrupt Request Input Timing


RESET Input Timing

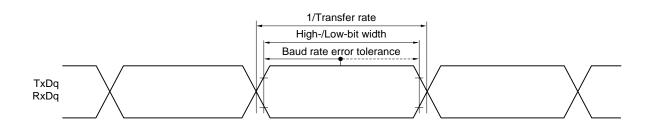
4.7 MCU peripheral circuit characteristics

AC Timing Test Points

4.7.1 Serial array unit


(1) During communication at same potential (UART mode)

		0.7 (//) / D D / E E (/)	GND0 = GND1 = VSS = 0V)
- (1 = -40/-7010 + 800		(N) = (N) = (N)


Parameter	Symbol	Conditions	、 U	speed main) iode	LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate				fмск/6		fмск/6		fмск/6	bps
Note		Theoretical value of the maximum transfer rate fMCK = fCLK		5.3		1.3		0.6	Mbps

Note Transfer rate in the SNOOZE mode is only 4800 bps.

Caution 1. Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

Caution 2. When RAJ240100 is used in $T_A = -40$ to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions	HS (high-speed mode	l main)	LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tkcy1 ≥ 4/fclk	125		500		1000		ns
SCKp high-/low-level	tĸнı, tĸ∟ı	4.0V ≤ VDD ≤ 5.5V	tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
width		2.7V ≤ VDD ≤ 5.5V	tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time	tsik1	4.0V ≤ VDD ≤ 5.5V	44		110		110		ns
(to SCKp↑) Note 1		2.7V ≤ VDD ≤ 5.5V	44		110		110		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi1		19		19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tks01	C = 30 pF Note 4		25		25		25	ns

 $(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

The delay time to SOp output becomes "from SCKp[†]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution 1. Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Caution 2. When RAJ240100 is used in T_A = -40 to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

Remark 1. p: CSI number (p = 00, 10), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3),

g: PIM number (g = 0, 1, 3 to 5, 14)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Cond	itions		h-speed mode		/-speed mode		-voltage mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү2	4.0V ≤ VDD ≤	20MHz < fмск	8/fмск		_		_		ns
Note 5		5.5V	fмск ≤ 20MHz	6/fмск		6/fмск		6/fмск		ns
		2.7V ≤ VDD ≤	1 MHz < fмск	8/fмск		_		_		ns
		5.5V	fмск ≤ 16MHz	6/fмск		6/fмск		6/fмск		ns
SCKp high-/low-level width	tĸн2, tĸ∟2	4.0V ≤ VDD ≤ 5.5\	/	tксү2/2 - 7		tксү2/2 - 7		tксү2/2 - 7		ns
		2.7V ≤ VDD ≤ 5.5\	/	tксү2/2 - 8		tксү2/2 - 8		tксү2/2 - 8		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsık2			1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output _{Note 3}	tKSO2	C = 30pF Note 4			2/fмск + 44		2/fмск + 110		2/fмск + 110	ns

 $(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$

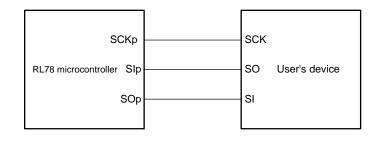
Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

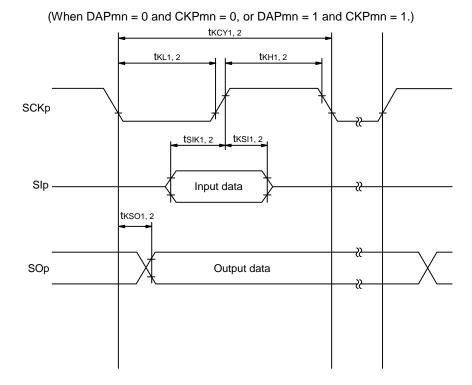
Note 4. C is the load capacitance of the SCKp and SOp output lines.

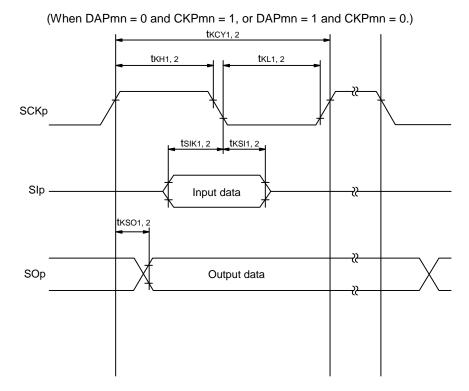

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution 1. Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Caution 2. When RAJ240100 is used in $T_A = -40$ to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

Remark 1. p: CSI number (p = 00, 10), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)


Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))


CSI mode connection diagram (during communication at same potential)

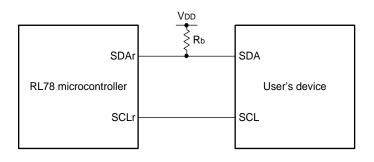
Remark 1. p: CSI number (p = 00, 10) Remark 2. m: Unit number, n: Channel number (mn = 00, 02)

CSI mode serial transfer timing (during communication at same potential)

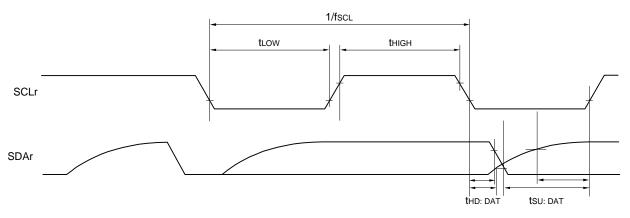
CSI mode serial transfer timing (during communication at same potential)

Remark 1. p: CSI number (p = 00, 10) Remark 2. m: Unit number, n: Channel number (mn = 00, 02)

(4) During communication at same potential (simplified I²C mode)


Parameter	Symbol	Conditions		h-speed mode		LS (low-speed main) mode		LV (low-voltage main) mode		
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SCLr clock frequency	fscL	2.7V ≤ VDD ≤ 5.5V, Cb = 50pF, Rb = 2.7kΩ		1000 ^{Note 1}		400 ^{Note 1}		400 ^{Note1}	kHz	
Hold time when SCLr = "L"	tLOW	2.7V ≤ VDD ≤ 5.5V, Cb = 50pF, Rb = 2.7kΩ	475		1150		1150		ns	
Hold time when SCLr = "H"	tнigн	2.7V ≤ VDD ≤ 5.5V, Cb = 50pF, Rb = 2.7kΩ	475		1150		1150		ns	
Data setup time (reception)	tsu: dat	2.7V ≤ VDD ≤ 5.5V, Cb = 50pF, Rb = 2.7kΩ	1/fMCK + 85 ^{Note 2}		1/fMCK + 145 ^{Note 2}		1/fмск + 145 ^{Note2}		ns	
Data hold time (transmission)	thd: dat	2.7V ≤ VDD ≤ 5.5V, Cb = 50pF, Rb = 2.7kΩ	0	305	0	305	0	305	ns	

 $(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$


Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value not to over the hold time of SCLr = "L" and SCLr = "H".

Caution 1. Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Caution 2. When RAJ240100 is used in $T_A = -40$ to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

Remark 1. $Rb[\Omega]$: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance

Remark 2. r: IIC number (r = 00, 10), g: PIM number (g = 10, 13), h: POM number (h = 11, 14)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

R01DS0301EJ0201 Rev.2.01

4.7.2 Serial interface IICA

(1) I²C standard mode

 $(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$

Parameter	Symbol	Conditions	HS (high-spe mod	,	LS (low-spe mod	,	LV (low-vol mo	o ,	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Standard mode: fc∟κ ≥ 1MHz	0	100	0	100	0	100	kHz
Setup time of restart condition	tsu: sta		4.7		4.7		4.7		us
Hold time Note 1	thd: STA		4.0		4.0		4.0		us
Hold time when SCLA0 = "L"	t∟ow		4.7		4.7		4.7		us
Hold time when SCLA0 = "H"	tнigн		4.0		4.0		4.0		us
Data setup time (reception)	tsu: dat		250		250		250		ns
Data hold time (transmission) Note 2	thd: dat		0	3.45	0	3.45	0	3.45	us
Setup time of stop condition	tsu: sto		4.0		4.0		4.0		us
Bus-free time	t BUF		4.7		4.7		4.7		us

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution When RAJ240100 is used in $T_A = -40$ to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: Cb = 400pF, Rb = $2.7k\Omega$

(2) I²C fast mode

 $(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$

Parameter	Symbol	Conditions	HS (high-spe mode	,	LS (low-spee mode	,	LV (low-volt mod	0 /	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fCLK ≥ 3.5 MHz	0	400	0	400	0	400	kHz
Setup time of restart condition	tsu: sta		0.6		0.6		0.6		us
Hold time ^{Note1}	thd: STA		0.6		0.6		0.6		us
Hold time when SCLA0 = "L"	tLOW		1.3		1.3		1.3		us
Hold time when SCLA0 = "H"	thigh		0.6		0.6		0.6		us
Data setup time (reception)	tsu: dat		100		100		100		ns
Data hold time (transmission) Note2	thd: dat		0	0.9	0	0.9	0	0.9	us
Setup time of stop condition	tsu: sto		0.6		0.6		0.6		us
Bus-free time	t BUF		1.3		1.3		1.3		us

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

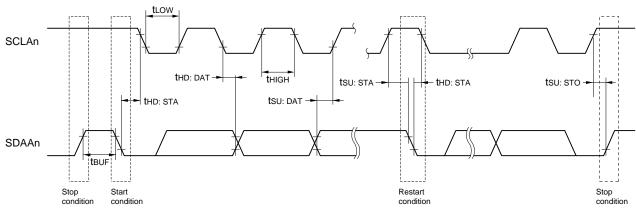
Caution When RAJ240100 is used in $T_A = -40$ to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: Cb = 320pF, Rb = $1.1k\Omega$

(3) I²C fast mode plus

 $(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$


Parameter	Symbol	Conditions	HS (high-spe mode	,	LS (low-spee mode	,	LV (low-volta mod	° ,	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode plus: fCLK ≥ 10 MHz	0	1000					kHz
Setup time of restart condition	tsu: sta		0.26						us
Hold time Note 1	thd: STA		0.26						us
Hold time when SCLA0 = "L"	tLOW		0.5						us
Hold time when SCLA0 = "H"	thigh		0.26						us
Data setup time (reception)	tsu: dat		50						ns
Data hold time (transmission)	thd: dat		0	0.45					us
Setup time of stop condition	tsu: sto		0.26						us
Bus-free time	t BUF		0.5						us

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected

Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution When RAJ240100 is used in T_A = -40 to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

Fast mode plus: Cb = 120pF, $Rb = 1.1k\Omega$

IICA serial transfer timing

Remark n = 0

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

4.7.3 CAN interface

 $(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$

Parameter	Symbol	Conditions	HS (high-spee	ed main) mode	Unit
			MIN.	MAX.	
Transfer rate		Theoretical value of the maximum transfer rate $f_{CAN} = f_{CLK/2}$		1	Mbps

4.7.4 A/D converter characteristics

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1),

target pin: ANI02, ANI03, internal reference voltage, and temperature sensor output voltage

 $(T_{A} = -40/-20 \text{ to } +85C, 2.7V \le AV_{REFP} = VDD \le 5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFP} = VDD \le 5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFP} = VDD \le 5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFP} = VDD \le 5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFP} = VDD \le 5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFP} = VDD \le 5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFP} = VDD \le 5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (-) = AV_{REFP}, Reference voltage (-) = AV_{REFP} = VDD \le 5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (-) = AV_{REFP} = VDD \le 5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (-) = AV_{REFP} = VDD \le 5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (-) = AV_{REFP} = VDD \le 5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (-) = AV_{REFP} = VDD \le 5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (-) = AV_{REFP} = VDD \le 5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (-) = AV_{REFP} = VDD \le 5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (-) = AV_{REFP} = VDD \le 5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (-) = AV_{REFP} = AV_{REFP}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bits
Overall error Note 1	AINL	10-bit resolution AVREFP = VDDNote 3	2.7V ≤ AVREFP ≤ 5.5V		1.2	±3.5	LSB
Conversion time	tCONV	10-bit resolution	3.6V ≤ VDD ≤ 5.5V	2.125		39	us
		Target pin : ANI02-ANI03	2.7V ≤ VDD ≤ 5.5V	3.1875		39	us
		10-bit resolution	3.6V ≤ VDD ≤ 5.5V	2.375		39	us
		Target pin : Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.7V ≤ VDD ≤ 5.5V	3.5625		39	us
Zero-scale error Note 1, 2	Ezs	10-bit resolution AVREFP = VDD ^{Note 3}	2.7V ≤ AVREFP ≤ 5.5V			±0.25	%FSR
Full-scale error Note 1, 2	Efs	10-bit resolution AVREFP = VDD ^{Note 3}	2.7V ≤ AVREFP ≤ 5.5V			±0.25	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP = VDD ^{Note 3}	2.7V ≤ AVREFP ≤ 5.5V			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP = VDD ^{Note 3}	2.7V ≤ AVREFP ≤ 5.5V			±1.5	LSB
Analog input voltage	VAIN	ANI02 to ANI03		0		AVREFP	V
	(2.7V ≤ VI Temperati	Internal reference voltage $(2.7V \le VDD \le 5.5V, HS (high-speed main) mode)$			VBGR Note	4	V
		Temperature sensor output voltage (2.7V ≤ VDD ≤ 5.5V, HS (high-speed main				te 4	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

 Note 3.
 When AVREFP < VDD, the MAX. values are as follows.</td>

 Overall error:
 Add ±1.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.05%FSR to the MAX. value when AVREFP = VDD.

 Integral linearity error/Differential linearity error:
 Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

 Note 4.
 Refer to Section 4.7.5 Temperature sensor characteristics/internal reference voltage characteristic.

(2) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = VSS (ADREFM = 0),

target pin: ANI00 to ANI03, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bits
Overall error Note 1	AINL	10-bit resolution			1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	3.6V ≤ VDD ≤ 5.5V	2.125		39	us
		Target pin : ANI00 to ANI03	2.7V ≤ VDD ≤ 5.5V	3.1875		39	us
		10-bit resolution	3.6V ≤ VDD ≤ 5.5V	2.375		39	us
		Target pin : Internal reference voltage,	2.7V ≤ VDD ≤ 5.5V	3.5625		39	us
		and temperature sensor output voltage					
		(HS (high-speed main) mode)					
Zero-scale error Note 1, 2	Ezs	10-bit resolution				±0.60	%FSR
Full-scale error Note 1, 2	Efs	10-bit resolution				±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution				±4.0	LSB
Differential linearity Note 1	DLE	10-bit resolution				±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI3		0		Vdd	V
		Internal reference voltage			VBGR Note 3	3	V
		(2.7V ≤ VDD ≤ 5.5V, HS (high-speed main)) mode)				
		Temperature sensor output voltage		V	TMPS25 Note	93	V
	(2.7V ≤ VDD ≤ 5.5V, HS (high-speed) mode)				

$(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 30)$	5.5V, GND0 = GND1 = VSS = 0V, Reference voltage (+) = VDD, Refere	ence voltage (-) = VSS)

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to Section 4.7.5 Temperature sensor characteristics/internal reference voltage characteristic.

(3) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-)

= AVREFM/ANI1 (ADREFM = 1), target pin: ANI00, ANI02, ANI03

 $(T_{A} = -40/-20 \text{ to } +85C, 2.7V \leq VDD \leq 5.5V, \text{GND0} = \text{GND1} = \text{VSS} = 0V, \text{ Reference voltage (+)} = \text{VBGR}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AVREFM} = 0V$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Resolution	RES			8		bits	
Conversion time	tCONV	8-bit resolution	17		39	us	
Zero-scale error Note 1, 2	Ezs	8-bit resolution			±0.60	%FSR	
Integral linearity error Note 1	ILE	8-bit resolution			±2.0	LSB	
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB	
Analog input voltage	VAIN		0		VBGR Note 3	V	

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 4.7.5 Temperature sensor characteristics/internal reference voltage characteristic.

 Note 4.
 When reference voltage (-) = VSS, the MAX. values are as follows.

 Zero-scale error:
 Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.

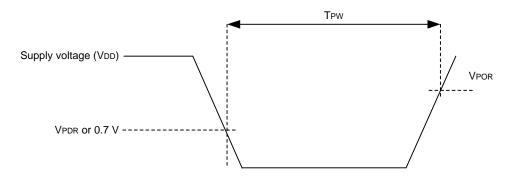
 Integral linearity error:
 Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.

 Differential linearity error:
 Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

4.7.5 Temperature sensor characteristics/internal reference voltage characteristic

 $(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output	VTMPS25	Setting ADS register = 80H, TA = +25C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/C
Operation stabilization wait time	tAMP		5			us


4.7.6 POR circuit characteristics (MCU)

$(I_A = -40/-20 \text{ to } +85 \text{ C}, \text{ GND0} =$	= GNDT = VS	55 = 0.0				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power on/down reset	VPOR	Voltage threshold on VDD rising	1.47	1.51	1.55	V
threshold	Vpdr	Voltage threshold on VDD falling Note 1	1.46	1.50	1.54	V
Minimum pulse width Note 2	TPW		300			us

(T_A = -40/-20 to +85 C, GND0 = GND1 = VSS = 0 V)

Note 1. However, when operating voltage drops when LVD is off, it enters STOP mode, or enable the reset status using external reset pin before the voltage drops below the operating voltage range shown in Section 4.6 AC Characteristics.

Note 2. Minimum time required for POR to reset when VDD is below VPDR. This is also the minimum time required for a POR reset when VDD exceeds VPOR after VDD is below 0.7 V during STOP mode or while the main system clock is stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

4.7.7 LVD circuit characteristics

(1) Reset Mode and Interrupt Mode

(T_A= -40/-20 to +85°C, VPDR ≤VDD ≤5.5 V, GND0 = GND1 = VSS= 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage	Supply voltage level	VLVIO	Power supply rise time	3.98	4.06	4.14	V
detection			Power supply fall time	3.90	3.98	4.06	V
threshold		VLVI1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVI2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVI3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVI4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVI5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
	VLVI6	Power supply rise time	2.66	2.71	2.76	V	
		Power supply fall time	2.60	2.65	2.70	V	
	VLVI7	Power supply rise time	2.56	2.61	2.66	V	
			Power supply fall time	2.50	2.55	2.60	V
	VLVI8	Power supply rise time	2.45	2.50	2.55	V	
			Power supply fall time	2.40	2.45	2.50	V
	V _{LVI9}	Power supply rise time	2.05	2.09	2.13	V	
			Power supply fall time	2.00	2.04	2.08	V
		VLVI10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVI11	Power supply rise time	1.84	1.88	1.91	V
		Power supply fall time	1.80	1.84	1.87	V	
	VLVI12	Power supply rise time	1.74	1.77	1.81	V	
		Power supply fall time	1.70	1.73	1.77	V	
		VLVI13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pu	ulse width	tLw		300			μS
Detection d	elay time	tLD				300	μS

(1) Interrupt & Reset Mode

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Voltage detection	V _{LVDA0}	VPOC2, VPOC1, VPO	1.60	1.63	1.66	V	
threshold	VLVDA1	LVIS0, LVIS1 =	= 1, 0 Rising release reset voltage	1.74	1.77	1.81	V
			Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2	LVIS0, LVIS1 =	0, 1 Rising release reset voltage	1.84	1.88	1.91	V
			Falling interrupt voltage	1.80	1.84	1.87	V
	V _{LVDA3}	LVIS0, LVIS1 =	0, 0 Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVDB0}	VPOC2, VPOC1, VPO	C0 = 0, 0, 1, falling reset voltage	1.80	1.84	1.87	V
	V _{LVDB1}	LVIS0, LVIS1 =	= 1, 0 Rising release reset voltage	1.94	1.98	2.02	V
			Falling interrupt voltage	1.90	1.94	1.98	V
	V _{LVDB2}	LVIS0, LVIS1 =	0, 1 Rising release reset voltage	2.05	2.09	2.13	V
			Falling interrupt voltage	2.00	2.04	2.08	V
	V _{LVDB3}	LVIS0, LVIS1 =	0, 0 Rising release reset voltage	3.07	3.13	3.19	V
			Falling interrupt voltage	3.00	3.06	3.12	V
	V _{LVDC0}	VPOC2, VPOC1, VPO	C0 = 0, 1, 0, falling reset voltage	2.40	2.45	2.50	V
	VLVDC1	LVIS0, LVIS1 =	= 1, 0 Rising release reset voltage	2.56	2.61	2.66	V
			Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2	LVIS0, LVIS1 =	0, 1 Rising release reset voltage	2.66	2.71	2.76	V
			Falling interrupt voltage	2.60	2.65	2.70	V
	V _{LVDC3}	LVIS0, LVIS1 =	0, 0 Rising release reset voltage	3.68	3.75	3.82	V
			Falling interrupt voltage	3.60	3.67	3.74	V
	V _{LVDD0}	VPOC2, VPOC1, VPO	C0 = 0, 1, 1, falling reset voltage	2.70	2.75	2.81	V
	V _{LVDD1}	LVIS0, LVIS1 =	= 1, 0 Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVDD2}	LVIS0, LVIS1 =	0, 1 Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V
	V _{LVDD3}	LVIS0, LVIS1 =	0, 0 Rising release reset voltage	3.98	4.06	4.14	V
			Falling interrupt voltage	3.90	3.98	4.06	V

4.8 AFE peripheral circuit characteristics

4.8.1 High-voltage port characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	Viн		2.6			V
Input voltage, low	VIL				0.7	V
Output voltage, high	Vон	IOH = - 1mA	VCC-0.7		VCC	V
Output voltage, low	VoL	IOL = 1mA			0.7	V
On resistance, high level output (Pch MOS output)	Ronp	IOH= - 1mA			700	Ω
On resistance, high level output (Nch MOS output)	Ronn	IOL= 1 mA			700	Ω
Pin leakage current	Ilk	VI=VCC, GND			±1	uA

4.8.2 Multiplexer characteristics

|--|

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Gain VIN(n)-VIN(n-1)	GAIN1	VIN10,VIN9,VIN8,VIN7,VIN6,VIN5>2.0V VIN4,VIN3,VIN2,VIN1,VIN0>0V Note		1.0		V/V
Gain PACK, VIN10, PON	GAIN2			0.1		V/V
Gain AN0,1,2	GAIN3			1.0		V/V
Input voltage range VIN(n)-VIN(n-1)	VRA1	VIN10,VIN9,VIN8,VIN7,VIN6,VIN5>2.0V VIN4,VIN3,VIN2,VIN1,VIN0>0V ^{Note}	-0.1		5.1	V
Input voltage range PACK, VIN10, PON	VRA2		0.0		50.0	V
Input voltage range AN0, 1, 2	VRA3		0.0		1.8	V
Pin leakage current	ILKV1	VIN1=5V			2	uA
		VIN2=10V			2	uA
		VIN3=15V			2	uA
		VIN4=20V			2	uA
		VIN5=25V			2	uA
		VIN6=30V			2	uA
		VIN7=35V			2	uA
		VIN8=40V			2	uA
		VIN9=45V			2	uA
		VIN10=50V			2	uA

Note Reference voltage is GND0 and GND1

4.8.3 Sigma-delta A/D converter characteristics

 $(T_A = -40/-20 \text{ to } +85C, 4.0V \le VCC \le 50V, \text{GND0} = \text{GND1} = \text{VSS} = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution Note1	RESAD	Conversion time = 8ms			15	bits
		Conversion time = 4ms			14	bits
		Conversion time = 2ms			13	bits
		Conversion time = 1ms			12	bits
		Conversion time = 0.5ms			11	bits
		Conversion time = 0.25ms			10	bits
Input voltage range	VINAD		-0.1		5.1	V
Integral nonlinearity	INLAD	End fit	-27		27	LSB
Conversion result in zero input	ADZERO	VIN=0V		3317 Note 2		LSB
Temperature dependency In zero input	dTADZERO	VIN=0V	-0.24		+0.24	LSB/C
Conversion result in full-scale input	ADFS	VIN=5.1V		24100 Note 2		LSB
Temperature dependency in full-scale input	dTADFS	VIN=5.1V	-0.24		+0.24	LSB/C
Input resistance	RINAD			(1.0)		MΩ
Battery cell voltage	ERRCELL1	$T_A = +25C$ After calibration			±5	mV
measurement error	ERRCELL2	$-20C \le T_A \le 85C$ After calibration			±10	mV
	ERRCELL2L	$-40C \le T_A \le 85C$ After calibration			±12	mV

Note 1. AD conversion result is output in 15-bit.

Note 2. This value is before subtracting the offset voltage.

Caution 1. Except for Battery cell voltage measurement error (ERRCELL), these parameters are sigma-delta converter circuit characteristics.

Caution 2. Calibration is needed to keep high accuracy in system.

Caution 3. When RAJ240100 is used in $T_A = -40$ to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

Remark Values in brackets are design value.

4.8.4 Current integrating circuit characteristics

 $(T_A = -40/-20 \text{ to } +85C, 4.0V \le VCC \le 50V, \text{GND0} = \text{GND1} = \text{VSS} = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RESCC				18	bits
Conversion time	TCC			250		ms
Input voltage range	VINCC	±50mV mode ISENS1 to ISENS0	-50		+50	mV
		±100mV mode ISENS1 to ISENS0	-100		+100	mV
		±200mV mode ISENS1 to ISENS0	-200		+200	mV
Integral nonlinearity	INLCC	End fit			0.02	%FSR
Input resistance	RINCC	ISENS0, ISENS1		(1.0)		MΩ
Current measurement error	ERRCURR	\pm 50mV mode, -20C ≤ T _A ≤ 85C After calibration			(±25)	uV
		\pm 50mV mode, -40C \leq T _A \leq 85C After calibration			(±30)	uV
		$\pm 100 \text{mV}$ mode -20C $\leq T_A \leq 85C$ After calibration			(±50)	uV
		± 100 mV mode -40C $\leq T_A \leq 85$ C After calibration			(±60)	uV
		\pm 200mV mode -20C ≤ T _A ≤ 85C After calibration Input voltage range : -100mV to 200mV			(±100)	uV
		\pm 200mV mode -40C ≤ T _A ≤ 85C After calibration Input voltage range : -100mV to 200mV			(±120)	uV

Caution 1. Except for Current measurement error (ERRCURR), these parameters are current integration circuit characteristics Caution 2. Calibration is needed to keep high accuracy in system.

Caution 3. When RAJ240100 is used in $T_A = -40$ to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

Remark Values in brackets are design value.

4.8.5 **Overcurrent detection / wakeup current detection circuit characteristics**

 $(T_A = -40/-20 \text{ to } +85C, 4.0V \le VCC \le 50V, \text{GND0} = \text{GND1} = \text{VSS} = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Discharge short-circuit current detection	dSVSC	25mv to 200mV		12.5		mV
setting voltage step		200mV to 300mV		25		mV
Discharge short-circuit current detection	dVSC	25mv to 200mV setting			±12.5	mV
voltage error		225mV to 300mV setting			±25.0	mV mV
Discharge overcurrent detection setting	dSVDOC	15mV to 100mV		2.5		mV
voltage step		100mV to 200mV		5		mV us us ms
Discharge overcurrent detection voltage	dVDOC	15mV to 100mV setting			±5.0	mV
error Note 1		105mV to 200mV setting			±7.5	mV mV mV mV mV mV mV mV mV mV mV mV mV m
Charge overcurrent detection setting voltage	dSVCOC	-60mV to -2.5mV		2.5		mV
step		-100mV to -60mV		5		mV
Charge overcurrent detection voltage error	dVCOC	-60mV to -2.5mV setting			±5.0	mV
Note 1		-100mV to -65mV setting			±7.5	mV
Discharge wakeup current detection setting voltage step	dSVDWU	0mV to 140mV		1.25		mV
Charge wakeup current detection setting voltage step	dSVCWU	-140mV to 0mV		1.25		mV
DBPT current detection setting voltage step	dSVDBPT	0mV to 140mV		1.25		mV
Discharge wakeup current detection voltage error Note 1	dVDWU	20 times mode ISENS1 to ISENS0: 0.25mV to 2.5mV	-0.10	0.0	+0.25	mV
Charge wakeup current detection voltage error Note 1	dVCWU	20 times mode ISENS1 to ISENS0: -0.25mV to -2.5mV	-0.25	0.0	+0.10	mV
DBPT current detection voltage error Note 1	dVDBPT	20 times mode ISENS1 to ISENS0: 0.25mV to 2.5mV	-0.10	0.0	+0.25	mV
Discharge short-circuit current detection time error Note 2	dTSC	0us to 916us (61us step	0.0		30.5	us
Discharge overcurrent detection time error Note 2	dTDOC	0.488ms to 32s (0.488ms step)	0.0		122	us
Charge overcurrent detection time error	dTCOC	Ous to 15564us (61us step)	0.0		30.5	us
Discharge wakeup current detection time error Note 2	dTDWU	3.91ms to 62.56ms (61us step)	0		3.9	ms
Charge wakeup current detection time error Note 2	dTCWU	3.91ms to 62.56ms (61us step)	0		3.9	ms
DBPT current detection time error Note 2	dTDBPT	Ous to 916us (61us step)	0.0		30.5	us

Note 1. This is the specification after zero-calibration is executed.

Note 2. The frequency error of On-chip oscillator (AOCO and ALOCO) is excluded from these detection time error.

4.8.6 Charge/discharge FET control circuit characteristics

 $(T_A = -40/-20 \text{ to } +85C, 4.0V \le VCC \le 50V, GND0 = GND1 = VSS = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-side Charge FET control Output voltage, CFOUT=H	CFON1	$4.0V \le VCC < 6.0V$ Load between CFOUT to VBAT = 50nF/10M Ω Based on VBAT pin	5.0	9.5	10.0	V
	CFON2	$6.0V \le VCC$, $-20C \le T_A \le 85C$ Load between CFOUT to VBAT = $50nF/10M\Omega$ Based on VBAT pin	8.0	9.5	10.0	V
	CFON2L	$6.0V \le VCC$, $-40C \le T_A \le 85C$ Load between CFOUT to VBAT = $50nF/10M\Omega$ Based on VBAT pin	6.5	9.5	10.0	V
High-side Charge FET control Output voltage, CFOUT=L	CFOFF	Load between CFOUT to VBAT = $50nF/10M\Omega$ Based on VBAT pin	-0.2	0.0	0.2	V
High-side Charge FET control CFOUT rise Time	CFTR1	4.0V ≤ VCC < 6.0V Load between CFOUT to VBAT = 50nF/10MΩ Lo(VBAT)→Hi(VBAT+5V)		1.5	2.5	ms
	CFTR2	6.0V ≤ VCC Load between CFOUT to VBAT = 50nF/10MΩ Lo(VBAT)→Hi(VBAT+5V)		1.0	1.5	ms
High-side Charge FET control CFOUT fall Time	CFTF1	Load between CFOUT to VBAT = $50nF/10M\Omega$ Hi(VBAT+CFON1) \rightarrow Lo(VBAT+1V) OFF speed acceleration = Disable		0.5	1.0	ms
	CFTF2	Load between CFOUT to VBAT = $50nF/10M\Omega$ Hi(VBAT+CFON1) \rightarrow Lo(VBAT+1V) OFF speed acceleration = Enable		(0.2)	(0.5)	ms
High-side Discharge FET control Output voltage, DFOUT=H	DFON1	$4.0 \le VCC < 6.0V$ Load between DFOUT to PACK = 50nF/10M Ω Based on PACK pin	5.0	9.5	10.0	V
	DFON2	$6.0 \le VCC$, $-20C \le T_A \le 85C$ Load between DFOUT to PACK = $50nF/10M\Omega$ Based on PACK pin	8.0	9.5	10.0	V
	CFON2L	$6.0V \le VCC$, $-40C \le T_A \le 85C$ Load between CFOUT to VBAT = $50nF/10M\Omega$ Based on VBAT pin	6.5	9.5	10.0	V
High-side Discharge FET control Output voltage, DFOUT=L	DFOFF	Load between DFOUT to PACK = 50nF/10MΩ Based on PACK pin	-0.2	0.0	0.2	V
High-side Discharge FET control DFOUT rise Time	DFTR1	$4.0V \le VCC < 6.0V$ Load between DFOUT to PACK = $50nF/10M\Omega$ Lo(PACK) \rightarrow Hi(PACK+ $5V$)		1.5	2.5	ms
	DFTR2	6.0V ≤ VCC Load between DFOUT to PACK = $50nF/10M\Omega$ Lo(PACK)→Hi(PACK+5V)		1.0	1.5	ms
High-side Discharge FET control DFOUT fall Time	DFTF1	Load between DFOUT to PACK = $50nF/10M\Omega$ Hi(PACK+DFON1) \rightarrow Lo(PACK+1V) OFF speed acceleration = Disable		0.5	1.0	ms
	DFTF2	Load between DFOUT to PACK = $50nF/10M\Omega$ Hi(PACK+DFON1) \rightarrow Lo(PACK+1V) OFF speed acceleration = Enable		(0.2)	(0.5)	ms
Low-side Charge FET control Clamp voltage	CCLPON1	Based on VBAT pin 4.0V ≤ VBAT < 7.0V	-6.0		-3.0	V
	CCLPON2	Based on VBAT pin 7.0V ≤ VBAT	-14.0	-10.0	-6.0	V
Low-side Discharge FET control Clamp voltage	DCLPON1	Based on PACK pin 4.0V ≤ PACK < 7.0V	-6.0		-3.0	V
	DCLPON2	Based on PACK pin 7.0V ≤ PACK	-14.0	-10.0	-6.0	V

Caution 1. After trimming.

Caution 2. When RAJ240100 is used in T_A = -40 to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

Remark Values in brackets are design value.

4.8.7 **Power on circuit characteristics**

 $(T_A = -40/-20 \text{ to } +85C, 4.0V \le VCC \le 50V, \text{GND0} = \text{GND1} = \text{VSS} = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, High	Viн		2.6		VCC	V
Input voltage, Low	VIL		0.0		0.7	V
Pull-down resistance	Rdpon			12.4		MΩ

Caution 1. To entry power down mode, it is necessary to input power down command while PON port is L.

Caution 2. When RAJ240100 is used in T_A = -40 to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

4.8.8 Series regulator circuit characteristics

 $(T_A = -40/-20 \text{ to } +85C, 4.0V \le VCC \le 50V, \text{GND0} = \text{GND1} = \text{VSS} = 0V)$

Parameter	Symbol		Conditions		TYP.	MAX.	Unit
Output voltage	VR2O	3.3V setting	Io=50uA to 20mA,	3.20	3.30	3.40	V
	VR205	5.0V setting	6.0V ≤ VCC ≤ 50.0V,	4.85	5.00	5.15	V
			Io=50uA to 20mA				
Load drive	IOMAX	3.3V setting	$4.0V \le VCC < 5.0V$	10.0			mA
capability Note			5.0V ≤ VCC ≤ 50.0V	20.0			mA
	IOMAX5	5.0V setting	6.0V ≤ VCC < 7.0V	10.0			mA
			7.0V ≤ VCC ≤ 50.0V	20.0			mA

Note In case of using load drive, total power consumption must be under the maximum ratings power consumption (Pd).

Caution 1. After trimming.

Caution 2. When RAJ240100 is used in T_A = -40 to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

4.8.9 AFE reset circuit characteristics

 $(T_A = -40/-20 \text{ to } +85C, 4.0V \le VCC \le 50V, GND0 = GND1 = VSS = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VREG2 release voltage	Vrel		2.8	2.9	3.0	V
VREG2 detection voltage	Vdet	After trimming	2.7	2.8	2.9	V

Caution When RAJ240100 is used in T_A = -40 to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

4.8.10 Cell balancing circuit characteristics

 $(T_A = -40/-20 \text{ to } +85C, 4.0V \le VCC \le 50V, \text{GND0} = \text{GND1} = \text{VSS} = 0V)$

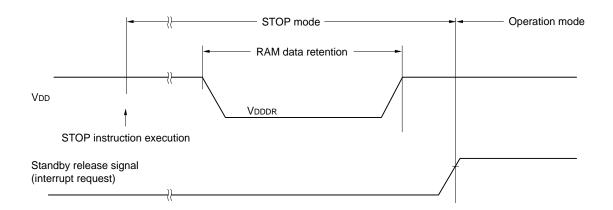
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
1st cell on resistance	RCOND1	VIN1 – VIN0 = 3.5V	100	200	400	Ω
2nd cell on resistance	RCOND2	VIN2 – VIN1 = 3.5V	100	200	400	Ω
3rd cell on resistance	Rcond3	VIN3 – VIN2 = 3.5V	100	200	400	Ω
4th cell on resistance	RCOND4	VIN4 – VIN3 = 3.5V	100	200	400	Ω
5th cell on resistance	RCOND5	VIN5 – VIN4 = 3.5V	100	200	400	Ω
6th cell on resistance	RCOND6	VIN6 – VIN5 = 3.5V	100	200	400	Ω
7th cell on resistance	RCOND7	VIN7 – VIN6 = 3.5V	100	200	400	Ω
8th cell on resistance	RCOND8	VIN8 – VIN7 = 3.5V	100	200	400	Ω
9th cell on resistance	RCOND9	VIN9 – VIN8 = 3.5V	100	200	400	Ω
10th cell on resistance	RCOND10	VIN10 – VIN9 = 3.5V	100	200	400	Ω

Caution When RAJ240100 is used in T_A = -40 to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

4.8.11 VREG2 Voltage Drop Detection Circuit characteristics

 $(T_A = -40/-20 \text{ to } +85C, 4.0V \le VCC \le 50V, \text{GND0} = \text{GND1} = \text{VSS} = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VREG2 Voltage	VR2LVD	3.3V setting	2.85	2.90	2.95	V
detection threshold	VR2LVD5	5.0V setting	4.55	4.60	4.65	V


4.9 RAM Data Retention Characteristics

 $(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.46 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

Caution When RAJ240100 is used in T_A = -40 to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

4.10 Flash Memory Programming Characteristics

 $(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk		1		32	MHz
Number of code flash rewrites Note 1, 2, 3	Cerwr	Retained for 20 years TA = 85 C	1,000			Times
Number of data flash rewrites Note 1, 2, 3		Retained for 1 year TA = 25 C		1,000,000		
		Retained for 5 years TA = 85 C	100,000			
		Retained for 20 years TA = 85 C	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retained years are until next rewrite completion.

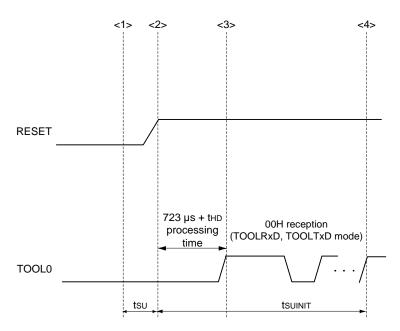
Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

Caution When RAJ240100 is used in T_A = -40 to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

4.11 Dedicated Flash Memory Programmer Communication (UART)

 $(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

4.12 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40/-20 \text{ to } +85C, 2.7V \le VDD \le 5.5V, GND0 = GND1 = VSS = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
The time needed when an external reset ends until the initial communication settings are specified	t SUINIT	POR and LVD reset must end before the external reset ends.			100	ms
The time needed from when the TOOL0 pin is placed at low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			us
The time needed for the TOOL0 pin must be kept at low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)		POR and LVD reset must end before the external reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

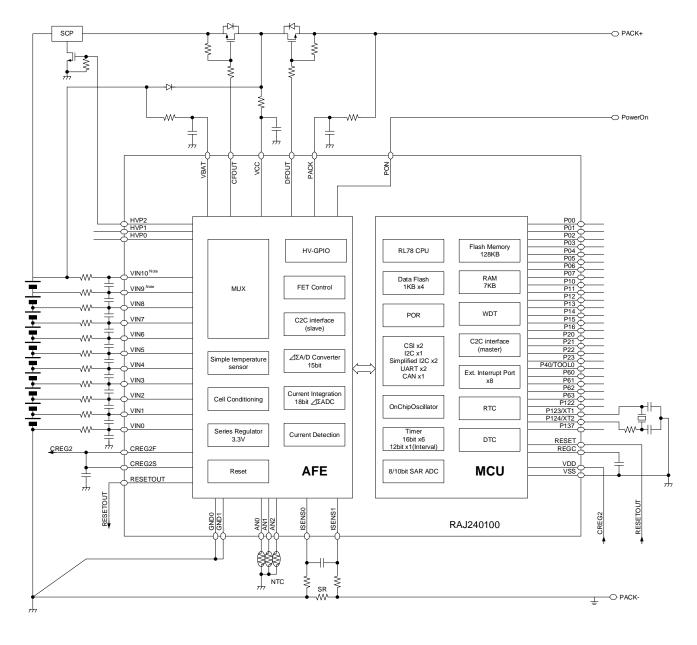
<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Caution When RAJ240100 is used in T_A = -40 to 85C, REG2T6 (bit 6 of REG2T register) must be set to "1".

- **Remark** tSUINIT: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.
 - tSU: Time needed for the TOOL0 pin is placed at low level until the pin reset ends
 - tHD: Time needed for the TOOL0 pin at low level from when the external resets end

(excluding the processing time of the firmware to control the flash memory)



5. Detailed description

5.1 Overview

RAJ240090 / RAJ240100 are Renesas fuel gauge ICs which consist of a MCU block and an AFE block in a single package and accomplish various protection mechanisms. These IC's incorporates advanced battery management features such as primary and secondary protection, voltage and current measurement, current integration, host communication interface. By using the battery management controlled firmware and data are stored in the embedded flash memory to control the embedded analog and digital hardware circuits, optimum battery management operation including high accuracy remaining capacity estimation and battery safety can be achieved.

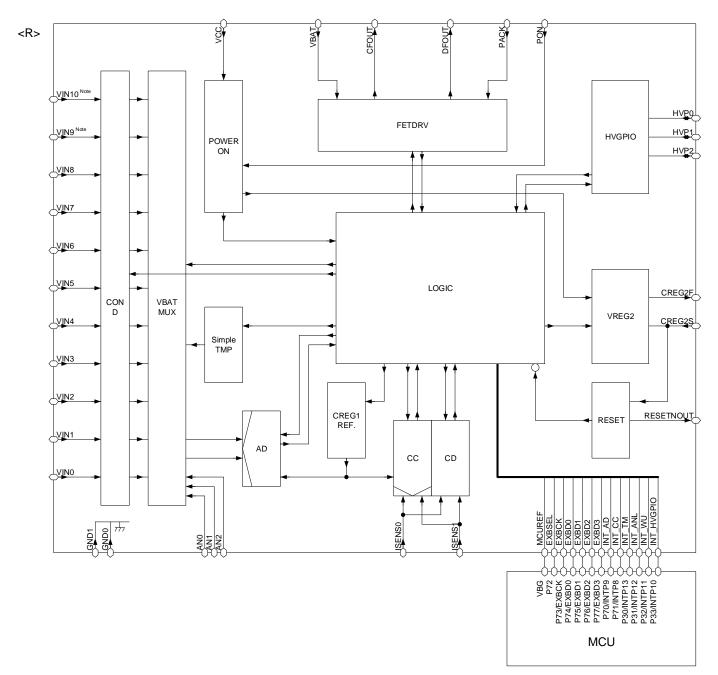
5.2 System block diagram



Note VIN10 pin and VIN9 pin are only applicable to RAJ240100.

Caution The example peripheral circuit does not guarantee proper operation. Please perform sufficient evaluation using the actual application to determine the circuits and peripherals.

5.3 MCU block diagram



Caution 1. P30, P31, P32, P33, P70, P72, P73, P74, P75, P76 and P77 are connected to the internal AFE chip and not connected to the package external pins.

Caution 2. Each interrupt request of AFE are assigned to P30/INTP13, P31/INTP12, P32/INTP11, P33/INTP10, P70/INTP9 and P71/INTP8.

RENESAS

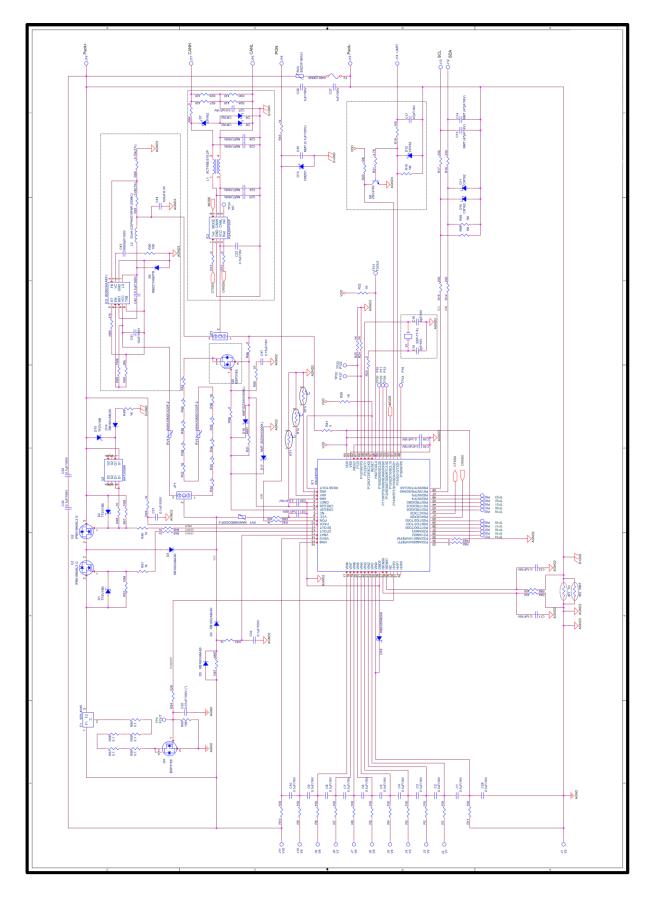
5.4 AFE block diagram

Note VIN10 pin and VIN9 pin are only applicable to RAJ240100.

6. Application Guideline

6.1 Typical Application Specification

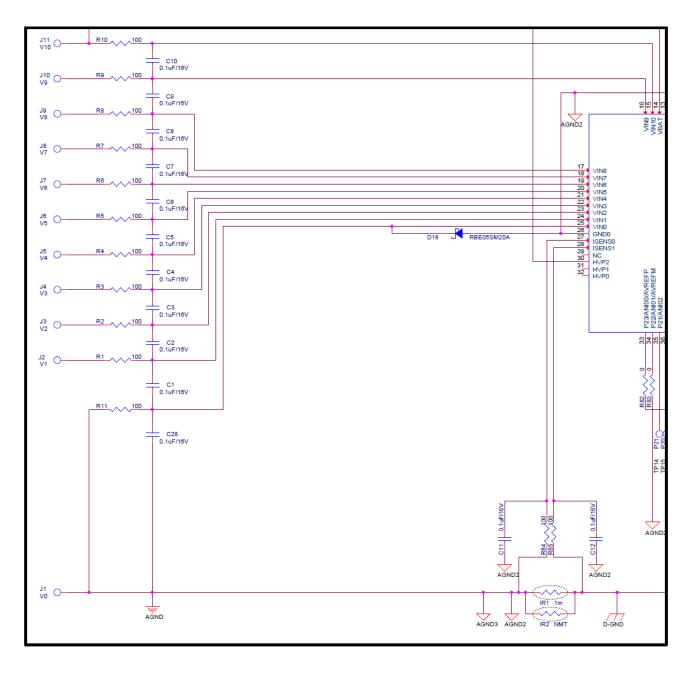
A typical specification example of Li-ion battery management unit as shown below.


From the next page, the typical application guideline is explained for RAJ240100 (10 series cells application).

Battery cell as	ssembly	: 8S1P (8 cells in series and 1 cell in parallel) for RAJ240090					
		: 10S1P (10 cells in series and 1 cell in parallel) for RAJ240100					
Host interface		System Management Bus (SMBus) Specification, version 1.1.					
		: UART					
		CAN					
Primary prote	ection	harge FET and discharge FET					
Secondary pr	otection	: Fuse blow by FGIC (RAJ240090 and RAJ240100) or a secondary protection device.					
Connector pins:							
Pack+	Positive b	pattery pack terminal					
SCL	SMBus cl	ock					
SDA	SMBus da	ata					
CANH	CAN high						
CANL	CAN low						
UART	UART cor	mmunication port					
PON	High voltage port for battery power on						
Pack-	Negative battery pack terminal						
External reve	rse charge	e protection circuit					

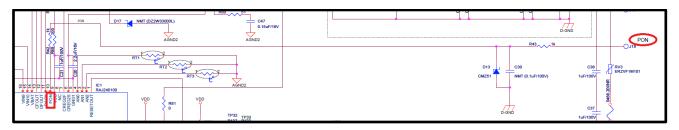
Battery and charge/discharge MOSFET temperature measurement with three thermistors

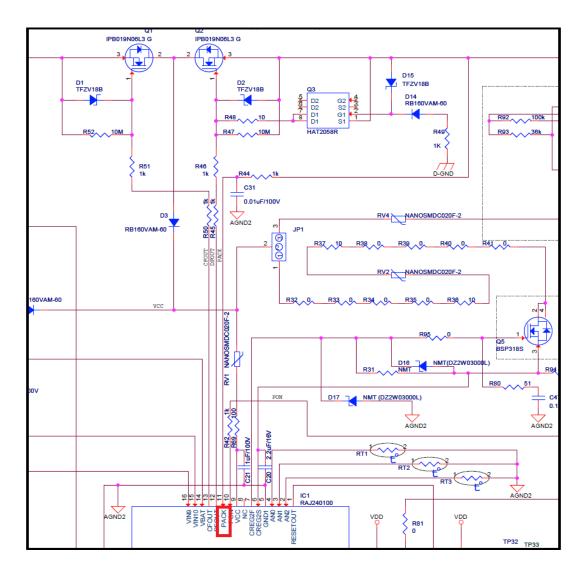
6.2 Typical Application Circuit


Typical Application Circuit Schematic

6.3 Circuit Design Guideline

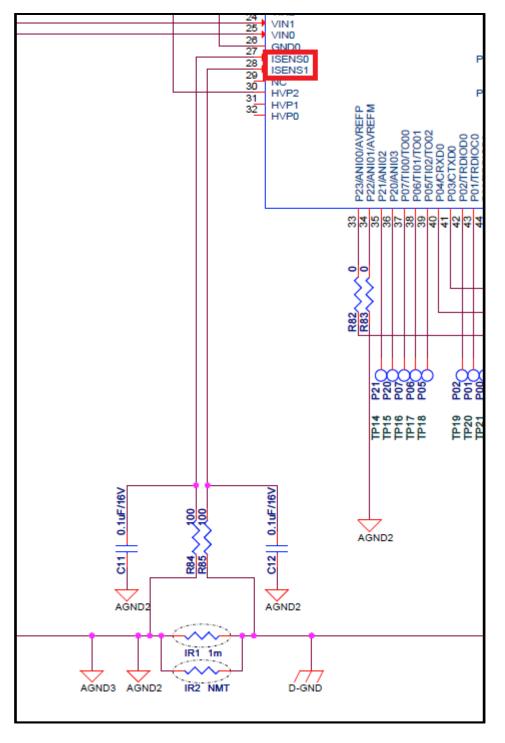
6.3.1 Cell voltage monitor circuit


- Place an input filter between FGIC's VIN port and each of the cells.
- Place resistors valued around 100Ω and capacitors valued around 0.1uF to VIN1 VIN10 for surge protection. It is necessary to calculate the cut-off frequency and use correct resistance and capacitance value based on application.

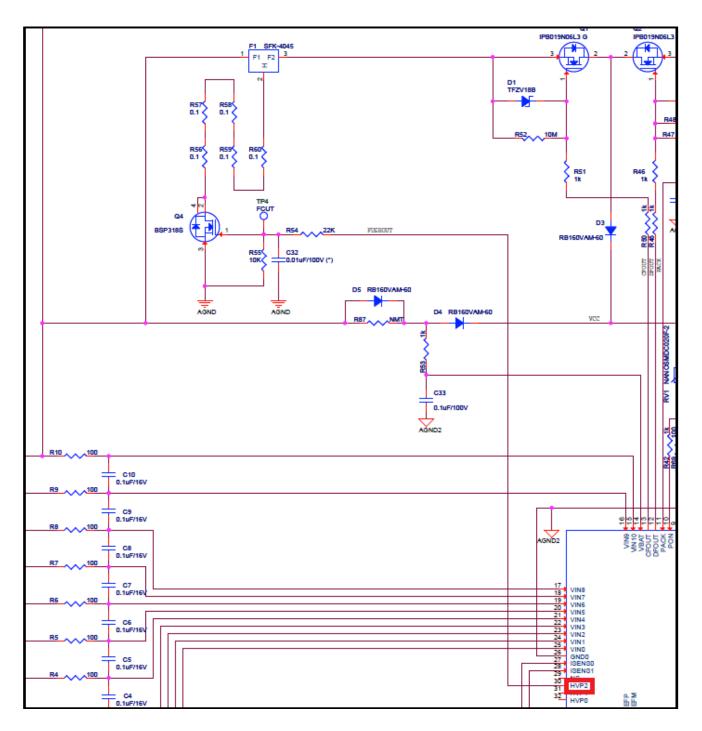

6.3.2 Battery power on circuit

Place resistors value around 2kΩ (1kΩ+1kΩ), capacitor 0.1uF and zener diode to PON for surge protection. It is necessary to calculate cut-off frequency and use correct resistance and capacitance value based on application.

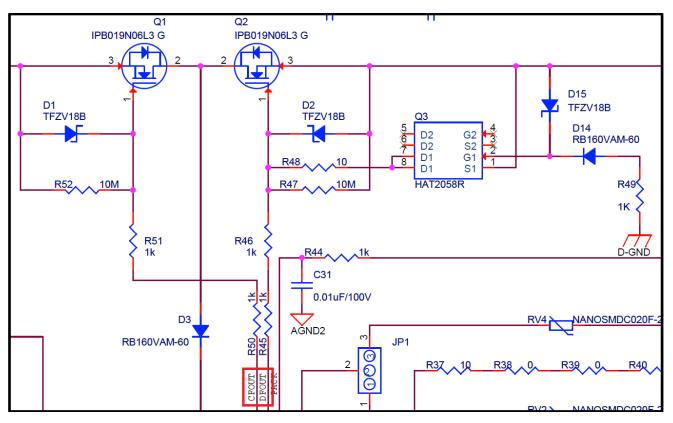
6.3.3 PACK port


- PACK port is source voltage of DFOUT (D-FET gate control signal). R44 plays a role in limiting the current limit when charger is reverse-charged. 1kΩ is recommended, if it is too large, the D-FET turn off speed will becomes too slow.
- C31 helps provide stable D-FET boost operation. 0.01µF is recommended. If it is too large, the D-FET turn off speed will becomes too slow.

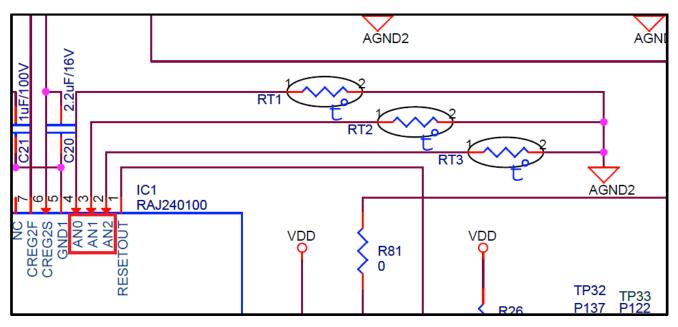
6.3.4 Current monitor

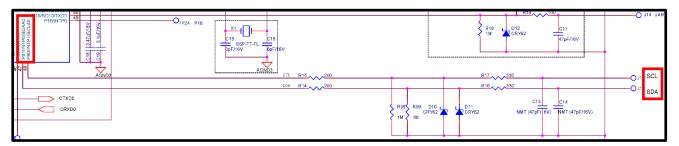

- Potential difference on the sense resistor is monitored by current integration circuit.
- Place a Low Pass Filter (100 Ω , 0.1µF) at input stage.
- Sense lines should be shielded if small voltage difference is detected to ensure high accurate current sensing.

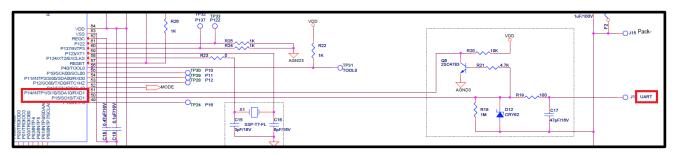
6.3.5 Fuse control


- Self-control protector (SCP) is used for fuse in reference circuit.
- The fuse will blow when RAJ240100 drives HVP2 (High voltage GPIO) pin high to make Q4 ON.
- The fuse will blow when overcurrent exceeds the limit of SCP.
- R56-R60 are used for battery electrochemical migration short circuit countermeasures.

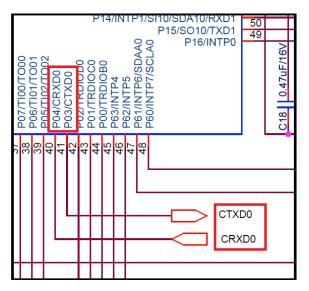
6.3.6 C-FET and D-FET control

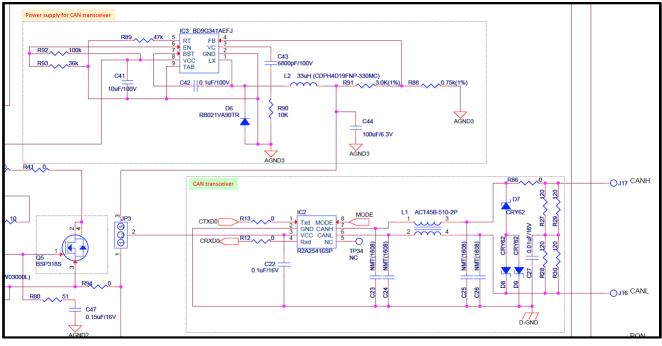

- Q3 is located between gate and source of Q2 to make D-FET turn off when charger is reverse connected.
- R49 is for Q3 gate protection. (1kΩ is recommended.)
- R45, R46 and R50, R51 are use as gate protection and C-FET/D-FET noise reduction. (2kΩ is recommended.)
- R47 and R52 are used to fix C-FET/D-FET gate voltage in order to keep stable off state when FET is turn off. 10MΩ is recommended to prevent voltage drop.


6.3.7 Thermistor

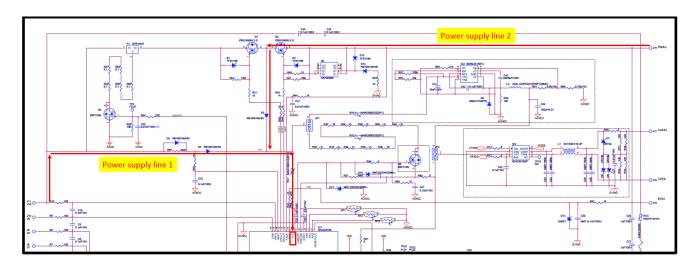

ADC voltage measurement pins (AN0, AN1, AN2) are assigned for thermistor.

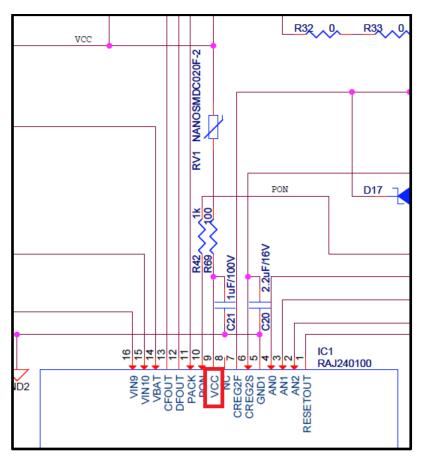
6.3.8 Communication line


- RAJ240090 / RAJ240100 support 3 kinds of communication, SMBus, UART and CAN.
- For electrical over stress countermeasure, input 200 Ω, 330 Ω resistance, zener diode and capacitance are recommended in SMBus communication line.
- For UART communication, P14 and P15 pins have VDD output circuit, therefore RXD/TXD line pull up voltage should be the same as VDD.
- CAN communication is made possible by adding CAN transceiver externally. It is necessary to adapt external power supply for CAN transceiver.



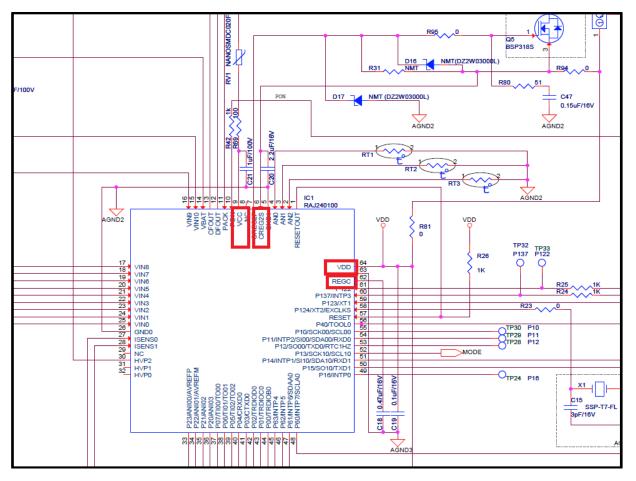
RAJ240090 / RAJ240100



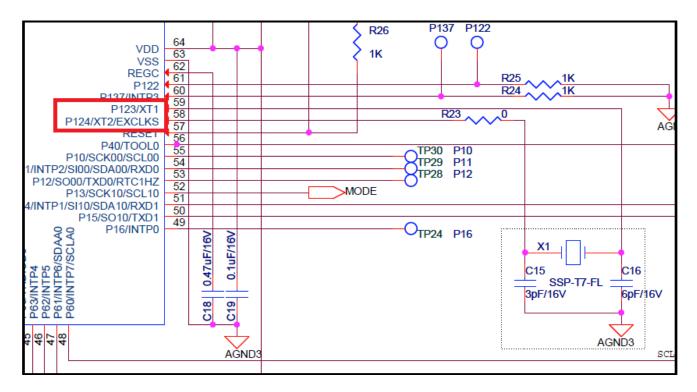


6.3.9 Power supply path

- Power is supplied to VCC through the following two paths depending on circumstance.
- Power supplied from battery side when fuse is blown. See power supply line 1.
- Higher output voltage from battery and charger is used as power supply. See power supply line 2.
- For protection of the VCC pin, it is recommended to add resistor and PTC for current limit.

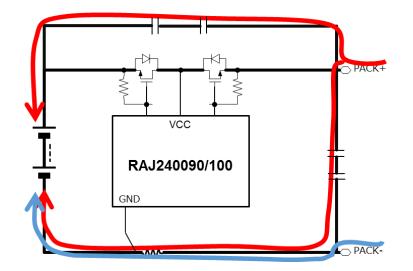


6.3.10 VCC, CREG2S, VDD and REGC capacitance


- The following decoupling capacitors must be located adjacent to each terminal.
- C21: VCC (1µF is recommended.)
- C20: CREG2 (2.2µF is recommended.)
- C19: VDD (0.1µF is recommended.)
- C18: REGC (0.47µF is recommended.)

6.3.11 Crystal oscillators port XT1 and XT2 for RTC

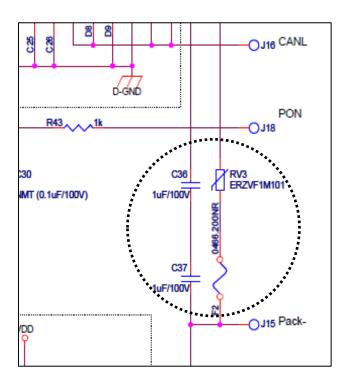
- RAJ240090 / RAJ240100 support RTC (Real time clock).
- XT1 and XT2 are used for an external crystal oscillator's port. It is recommended to set the XT1 and XT2 line length as short as possible.
- Shield pattern is necessary to XT1 line.

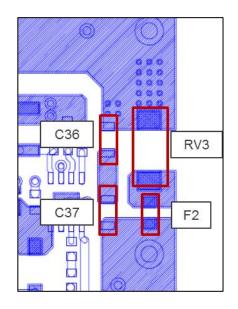

6.4 Layout Guidelines

6.4.1 Summary

- Large current patterns must be wide and short to minimize voltage drop and heat generation.
- Bypass capacitors must be mounted as close as possible to the device VCC / VBAT and GND pins to prevent erroneous operation due to noise from power supply.
- Capacitors for voltage regulators must be located close to regulator pins to ensure loop stability and ESD tolerance.
- All IC ground must be connected to the negative terminal of battery cells except ground for communication lines.
- Communication lines must be away from small signal current sense line to prevent the input signal from being disturbed by the incoming radiation noise.
- FGIC (RAJ240090 and RAJ240100) must be located away from any heat source (FET, current sense resistor and large current patterns) to minimize the influence of heat.

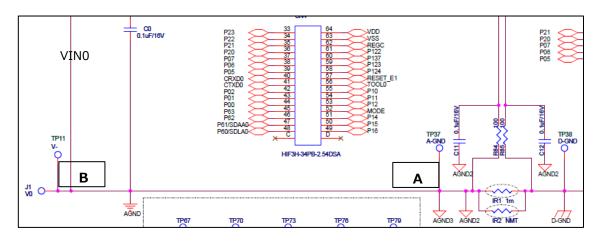
6.4.2 ESD protections on each terminal (basic policy)

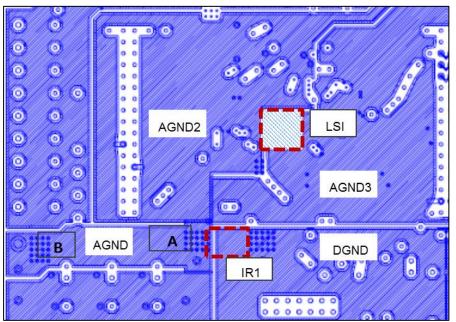

- ESD on Pack+ terminal must be discharged to the top side of the cell or to Pack- terminal through a capacitor.
- ESD on Pack- terminal must be discharged to the GND side of the cell.
- ESD on communication terminals and other GPIOs must be discharged to the GND side of the cell via Pack- terminal.
- The noise from PACK+ or PACK- must be discharged to the battery cells so that it will not interfere with FGIC functions and measurements.



6.4.3 Pack+, Pack- (Noise protection element)

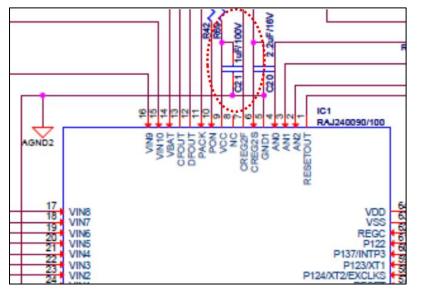
- A bypass capacitor must be placed between Pack+ and Pack-. (Countermeasure against ESD)
- A bypass capacitor must be located adjacent to Pack+, Pack-. (Minimize the ESD influence)
- Capacitors must be placed in series. (Countermeasure against short-circuit of capacitors)
- Don't use tantalum capacitor. (Tantalum capacitor can end up with short-circuited failure when damaged.)
- For the terminal protection against noise and overvoltage, It is recommended that it carries varistor or TVS diode .(RV3)
- It is recommended to add Fuse to prevent short circuit.(F2)
- C36, C37, RV3, F2 must be placed as short as possible between PACK + and PACK-. However, be careful not to narrow the distance between Pack + and Pack-.

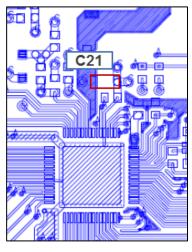




6.4.4 GND connection

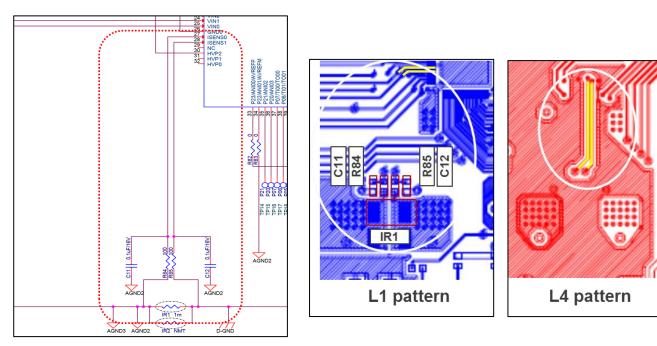
- Each analog GND of FGIC should be connected to the point (A) of current detection resistor of the cell side by the pattern with an adequate width. (Prevent potential variation by large current.)
- VIN0 should be connected near point V0 (B).
- The patterns between AGND, AGND2 and AGND3 must not be divided. (Keeping the GND potential of MCU and AFE equal)




6.4.5 Bypass capacitor between VCC and GND0

The patterns between VCC pin and GND1 pin, a bypass capacitor is connected and the path must be as short as possible and of equal length. (Countermeasure for ESD)
EQL: A start of the start o

FGIC and bypass capacitors must be placed on the same side of PCB without any through-hole.

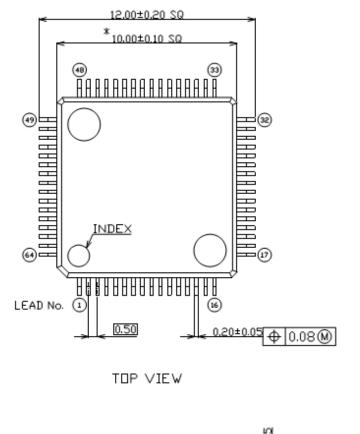

The lines to bypass capacitor must be wide and short. (To keep bypass capacitor effective in suppressing the potential variation.)

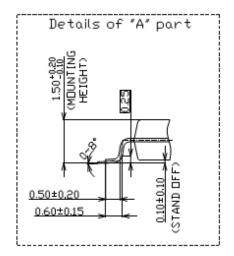
6.4.6 Current Monitor (ISENS0, ISENS1)

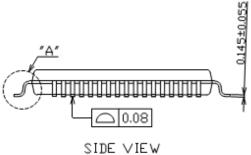
- Two lines from current sense resistor to ISENS0, ISENS1 must be the same in width and length, and in parallel with the same space between the two lines. (Prevent erroneous detections due to noise)
- LPF (100 ohm and 0.1 uF) and a shield pattern should be placed to ISENS0/1 lines. (Countermeasure against noise)

6.4.7 Communication line (SMBus)

- SMBus lines must be equipped with zener diodes. And it is necessary to mount resistors on the side of FGIC and pack connecter. (Zener diode and the resistor on the side of connector are for surge countermeasures, the resistor on the side of FGIC for noise countermeasure.)
- The resistor on the side of the FGIC must be located as close to the FGIC as possible


SCL R15 200 SDA R14 200		R17 330 R16 330	
FGIC	R98 R99 D10 CRV62 1M 1M	C13 C14 CRY62 NMT (47pF/16V) NMT (47pF/16V)	O ^{J12} SDA Connector


6.4.8 Unused Pins


Unused pins are recommended to be connected to GND via resistors as ESD countermeasure. (Setting low output by software prevents the terminal from becoming indefinite).

7. PACKAGE DRAWINGS

Caution Package outline is tentative version. All parameters are expressed in milimator.

REVISION HISTORY

Rev.	Date	Page	Description
1.00	Nov 27, 2017		First Version()
2.00	May 10, 2018	p.1	 Introduction Added desciption of Battery cell voltage and temperature (AN port voltage) detection circuit. Updated desciption for Operating ambient temperature (extend operating ambient temperature range). Added Note. OUTLINE Added desciption of Battery cell voltage and temperature (AN port voltage) detection circuit Updated desciption of Battery cell voltage and temperature (AN port voltage) detection circuit Updated desciption for Operating ambient temperature (extend operating ambient temperature range) ELECTRICAL SPECIFICATIONS Updated to extend operating ambient temperature range from (-20degC ~ +85degC) to (-40degC ~ +85degC) in RAJ240100.
2.01	Jun 7, 2018	p.62	5. Detailed description Updated figure of AFE block diagram

General cautions for Handling Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on Processing during Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate undetermined and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states state of

pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

- 3. Prohibition of Access to Reserved Addresses
 - Access to reserved addresses is prohibited.
 - The reserved addresses are provided for possible future expansion of functions only. Do not
 access these addresses; the correct operation of LSI will not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, the reset line will only be released after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, system-evaluation test needs to be implemented for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment: and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics

- 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.
- 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.3.0-1 November 2016)

http://www.renesas.com

Renesas Electronics Corporation SALES OFFICES Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141