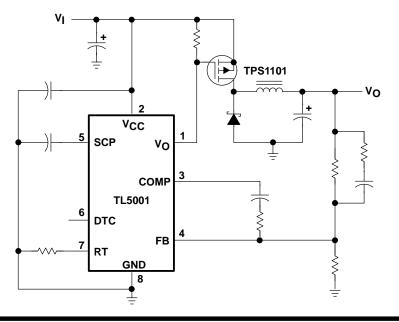

SLVS084C - APRIL 1994 - REVISED SEPTEMBER 1995

- Complete PWM Power Control
- 3.6-V to 40-V Operation
- Internal Undervoltage-Lockout Circuit
- Internal Short-Circuit Protection
- Oscillator Frequency . . . 40 kHz to 400 kHz
 Variable Dead Time Provides Control Over
- Total Range

description

The TL5001 incorporates on a single monolithic chip all the functions required for a pulse-width-modulation (PWM) control circuit. Designed primarily for power-supply control, the TL5001 contains an error amplifier, a regulator, an oscillator, a PWM comparator with a dead-time-control input, undervoltage lockout (UVLO), short-circuit protection (SCP), and an open-collector output transistor.

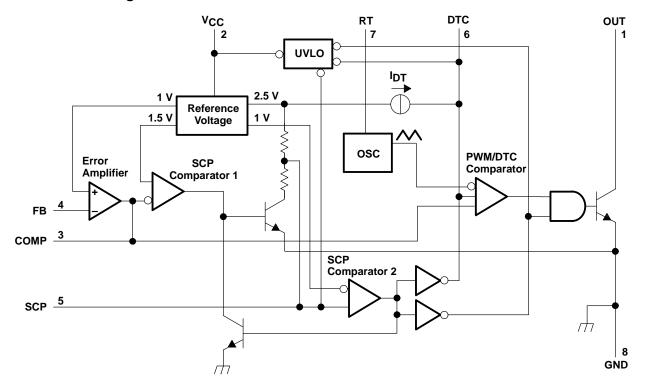

The error-amplifier common-mode voltage ranges from 0 V to 1.5 V. The noninverting input of the error amplifier is connected to a 1-V reference. Dead-time control (DTC) can be set to provide 0% to 100% dead time by connecting an external resistor between DTC and GND. The oscillator frequency is set by terminating RT with an external resistor to GND. During low V_{CC} conditions, the UVLO circuit turns the output off until V_{CC} recovers to its normal operating range.

The TL5001C is characterized for operation from -20° C to 85° C. The TL5001I is characterized for operation from -40° C to 85° C.

AVAILABLE OPTIONS							
	PACKAGED DEVICES						
TA	SMALL OUTLINE (D)	PLASTIC DIP (P)	CHIP FORM (Y)				
-20°C to 85°C	TL5001CD	TL5001CP	TL5001Y				
-40° C to 85° C	TL5001ID	TL5001IP	—				

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL5001CDR). Chip forms are tested at $T_A = 25$ °C.

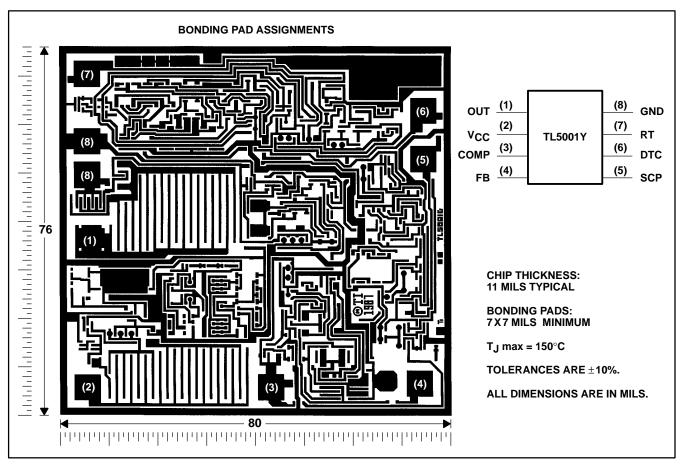
schematic for typical application


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright $\ensuremath{\textcircled{}^\circ}$ 1995, Texas Instruments Incorporated

SLVS084C - APRIL 1994 - REVISED SEPTEMBER 1995

functional block diagram



SLVS084C - APRIL 1994 - REVISED SEPTEMBER 1995

TL5001Y chip information

This chip, when properly assembled, displays characteristics similar to the TL5001C. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

SLVS084C - APRIL 1994 - REVISED SEPTEMBER 1995

detailed description

voltage reference

A 2.5-V regulator operating from V_{CC} is used to power the internal circuitry of the TL5001 and as a reference for the error amplifier and SCP circuits. A resistive divider provides a 1-V reference for the error amplifier noninverting input. The 1-V reference remains within 5% of nominal over the operating temperature range.

error amplifier

The error amplifier compares a sample of the dc-to-dc converter output voltage to the 1-V reference and generates an error signal for the PWM comparator. The dc-to-dc converter output voltage is set by selecting the error-amplifier gain (see Figure 1), using the following expression:

$$V_{\rm O} = (1 + R1/R2) (1 \text{ V})$$

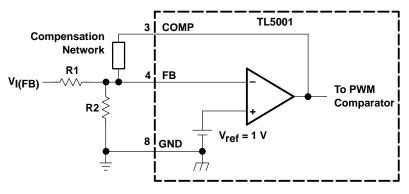


Figure 1. Error-Amplifier Gain Setting

error amplifier (continued)

The error-amplifier output is brought out as COMP for use in compensating the dc-to-dc converter control loop for stability. Because the amplifier can only source $45 \,\mu$ A, the total dc load resistance should be $100 \,k\Omega$ or more.

oscillator/PWM

The oscillator frequency (f_{osc}) can be set between 40 kHz and 400 kHz by connecting a resistor between RT and GND. Acceptable resistor values range from 15 k Ω to 250 k Ω . The oscillator frequency can be determined by using the graph shown in Figure 5.

The oscillator output is a triangular wave with a minimum value of approximately 0.7 V and a maximum value of approximately 1.3 V. The PWM comparator compares the error-amplifier output voltage and the DTC input voltage to the triangular wave and turns the output transistor off whenever the triangular wave is greater than the lesser of the two inputs.

dead-time control (DTC)

DTC provides a means of limiting the output-switch duty cycle to a value less than 100%, which is critical for boost and flyback converters. A current source generates a reference current (I_{DT}) at DTC that is nominally equal to the current at the oscillator timing terminal, RT. Connecting a resistor between DTC and GND generates a dead-time reference voltage (V_{DT}), which the PWM/DTC comparator compares to the oscillator triangle wave as described in the previous section. Nominally, the maximum duty cycle is 0% when V_{DT} is 0.7 V or less and 100% when V_{DT} is 1.3 V or greater. Because the triangle wave amplitude is a function of frequency and the source impedance of RT is relatively high (1250 Ω), choosing R_{DT} for a specific maximum duty cycle, D, is accomplished using the following equation and the voltage limits for the frequency in question as found in Figure 11 (V_{osc} max and V_{osc} min are the maximum and minimum oscillator levels):

$$\mathsf{R}_{\mathsf{DT}} = \left(\mathsf{R}_{\mathsf{t}} + \mathsf{1250}\right) \left[\mathsf{D}(\mathsf{V}_{\mathsf{osc}}\mathsf{max} - \mathsf{V}_{\mathsf{osc}}\mathsf{min}) + \mathsf{V}_{\mathsf{osc}}\mathsf{min}\right]$$

where

R_{DT} and R_t are in ohms, D in decimal

Soft start can be implemented by paralleling the DTC resistor with a capacitor (C_{DT}) as shown in Figure 2. During soft start, the voltage at DTC is derived by the following equation:

$$V_{DT} \approx I_{DT}R_{DT} \left(1 - e^{\left(-t/R_{DT}C_{DT}\right)}\right)$$

$$c_{DT} = \frac{6}{1 - e^{-t/R_{DT}C_{DT}}} DTC_{TL5001}$$

Figure 2. Soft-Start Circuit

If the dc-to-dc converter must be in regulation within a specified period of time, the time constant, $R_{DT}C_{DT}$, should be $t_0/3$ to $t_0/5$. The TL5001 remains off until $V_{DT} \approx 0.7$ V, the minimum ramp value. C_{DT} is discharged every time UVLO or SCP becomes active.

undervoltage-lockout (UVLO) protection

The undervoltage-lockout circuit turns the output transistor off and resets the SCP latch whenever the supply voltage drops too low (approximately 3 V) for proper operation. A hysteresis voltage of 200 mV eliminates false triggering on noise and chattering.

short-circuit protection (SCP)

The TL5001 includes short-circuit protection (see Figure 3), which turns the power switch off to prevent damage when the converter output is shorted. When activated, the SCP prevents the switch from being turned on until the internal latching circuit is reset. The circuit is reset by reducing the input voltage until UVLO becomes active or until the SCP terminal is pulled to ground externally.

When a short circuit occurs, the error-amplifier output at COMP rises to increase the power-switch duty cycle in an attempt to maintain the output voltage. SCP comparator 1 starts an RC timing circuit when COMP exceeds 1.5 V. If the short is removed and the error-amplifier output drops below 1.5 V before time out, normal converter operation continues. If the fault is still present at the end of the time-out period, the timer sets the latching circuit and turns off the TL5001 output transistor.

SLVS084C – APRIL 1994 – REVISED SEPTEMBER 1995

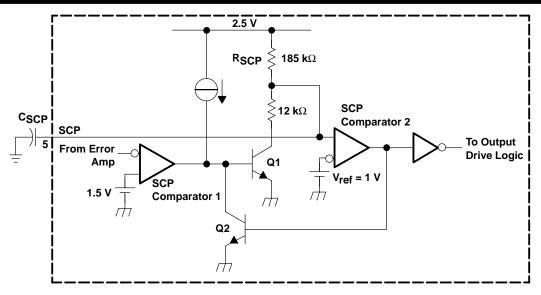


Figure 3. SCP Circuit

The timer operates by charging an external capacitor (C_{SCP}), connected between the SCP terminal and ground, towards 2.5 V through a 185-k Ω resistor (R_{SCP}). The circuit begins charging from an initial voltage of approximately 185 mV and times out when the capacitor voltage reaches 1 V. The output of SCP comparator 2 then goes high, turns on Q2, and latches the timer circuit. The expression for setting the SCP time period is derived from the following equation:

$$V_{SCP} = (2.5 - 0.185)(1 - e^{-t/\tau}) + 0.185$$

where

 $\tau = R_{SCP}C_{SCP}$

The end of the time-out period, t_{SCP} , occurs when $V_{SCP} = 1$ V. Solving for C_{SCP} yields:

 $C_{SCP} = 12.46 \times t_{SCP}$

where

t is in seconds, C in μF.

t_{SCP} must be much longer (generally 10 to 15 times) than the converter start-up period or the converter will not start.

output transistor

The output of the TL5001 is an open-collector transistor with a maximum collector current rating of 21 mA and a voltage rating of 51 V. The output is turned on under the following conditions: the oscillator triangle wave is lower than both the DTC voltage and the error-amplifier output voltage, the UVLO circuit is inactive, and the short-circuit protection circuit is inactive.

SLVS084C - APRIL 1994 - REVISED SEPTEMBER 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V_{CC} (see Note 1) Amplifier input voltage, $V_{I(FB)}$ Output voltage, V_O , OUT Output current, I_O , OUT Output peak current, $I_{O(peak)}$, OUT Continuous total power dissipation Operating ambient temperature range, T_A :		20 V 51 V 21 mA
Storage temperature range, T _{stg}		–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from	case for to seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE								
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING				
D	725 mW	5.8 mW/°C	464 mW	377 mW				
Р	1000 mW	8.0 mW/°C	640 mW	520 mW				

recommended operating conditions

			MIN	MAX	UNIT
Supply voltage, V _{CC}			3.6	40	V
Amplifier input voltage, VI(FB)			0	1.5	V
Output voltage, V _O , OUT				50	V
Output current, I _O , OUT				20	mA
COMP source current				45	μA
COMP dc load resistance			100		kΩ
Oscillator timing resistor, Rt			15	250	kΩ
Oscillator frequency, f _{OSC}		40	400	kHz	
Operating ambient temperature, T_A	TL5001C		-20	85	°C
	TL5001I		-40	85	C

SLVS084C - APRIL 1994 - REVISED SEPTEMBER 1995

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 6 V$, $f_{osc} = 100 \text{ kHz}$ (unless otherwise noted)

reference

PARAMETER	TEST CONDITIONS	TL50	UNIT		
PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
Output voltage	COMP connected to FB	0.95	1	1.05	V
Input regulation	V_{CC} = 3.6 V to 40 V		2	12.5	mV
Output voltage change with temperature	$T_A = -20^{\circ}C$ to 25°C (TL5001C)	-10	-1	10	
	$T_A = -40^{\circ}C$ to 25°C (TL5001I)	-10	-1	10	mV/V
	$T_A = 25^{\circ}C$ to $85^{\circ}C$	-10	-2	10	

[†] All typical values are at $T_A = 25^{\circ}C$.

undervoltage lockout

PARAMETER	TL5001C, TL5001I		UNIT	
	MIN	TYP†	MAX	
Upper threshold voltage		3		V
Lower threshold voltage		2.8		V
Hysteresis	100	200		mV

[†] All typical values are at $T_A = 25^{\circ}C$.

short-circuit protection

PARAMETER	TEST CONDITIONS	TL50	UNIT		
	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
SCP threshold voltage	T _A = 25°C	0.95	1.00	1.05	V
SCP voltage, latched	No pullup	140	185	230	mV
SCP voltage, UVLO standby	No pullup		60	120	mV
Timing resistance			185		kΩ
SCP comparator 1 threshold voltage			1.5		V

[†] All typical values are at $T_A = 25^{\circ}C$.

oscillator

TEST CONDITIONS	TL50	TL5001C, TL5001I			
TEST CONDITIONS	MIN	TYP†	MAX	UNIT	
R _t = 100 kΩ		97		kHz	
		15		kHz	
V _{CC} = 3.6 V to 40 V		1		kHz	
$T_A = -20^{\circ}C$ to $25^{\circ}C$	-4	-0.4	4	kHz	
$T_A = 25^{\circ}C$ to $85^{\circ}C$	-4	-0.2	4	KITZ	
		1		V	
	$V_{CC} = 3.6 \text{ V to } 40 \text{ V}$ $T_{A} = -20^{\circ}\text{C to } 25^{\circ}\text{C}$	TEST CONDITIONS MIN $R_t = 100 k\Omega$ $V_{CC} = 3.6 V to 40 V$ $T_A = -20^{\circ}C to 25^{\circ}C$ -4	TEST CONDITIONS MIN TYP1 $R_t = 100 \text{ k}\Omega$ 97 15 15 $V_{CC} = 3.6 \text{ V to } 40 \text{ V}$ 1 $T_A = -20^{\circ}\text{C to } 25^{\circ}\text{C}$ -4 -0.4	TEST CONDITIONS MIN TYP† MAX $R_t = 100 \text{ k}\Omega$ 97 15 $V_{CC} = 3.6 \text{ V to } 40 \text{ V}$ 1 1 $T_A = -20^{\circ}\text{C} \text{ to } 25^{\circ}\text{C}$ -4 -0.4 4	

[†] All typical values are at $T_A = 25^{\circ}C$.

SLVS084C - APRIL 1994 - REVISED SEPTEMBER 1995

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 6 V$, $f_{osc} = 100 \text{ kHz}$ (unless otherwise noted) (continued)

dead-time control

PARAMETER	TEST CONDITIONS	TL500	UNIT		
PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
Output (source) current		$0.9 \times I_{RT}^{\ddagger}$		$1.1 \times I_{RT}$	μA
Input threshold voltage	Duty cycle = 0%	0.5	0.7		V
Input threshold voltage	Duty cycle = 100%		1.3	1.5	v

[†] All typical values are at $T_A = 25^{\circ}C$. [‡] Output source current at RT

error amplifier

PARAMETER		TEST COL	TEST CONDITIONS		TL5001C, TL5001I			
PARAMETER		TEST CO	TEST CONDITIONS		TYP†	MAX	UNIT	
Input voltage		$V_{CC} = 3.6 V \text{ to } 40$	V _{CC} = 3.6 V to 40 V			1.5	V	
Input bias current					-160	-500	nA	
	Positive			1.5	2.3		V	
Output voltage swing	Negative				0.3	0.4	V	
Open-loop voltage amplification					80		dB	
Unity-gain bandwidth					1.5		MHz	
Output (sink) current		V _{I(FB)} = 1.2 V,	COMP = 1 V	100	600		μA	
Output (source) current		V _{I(FB)} = 0.8 V,	COMP = 1 V	-45	-90		μA	

[†] All typical values are at $T_A = 25^{\circ}C$.

output

PARAMETER	TEST CONDITIONS	TL50	UNIT		
	TEST CONDITIONS	MIN	TYP†	MAX	
Output saturation voltage	I _O = 10 mA		1.5	2	V
Off-state current	$V_{O} = 50 V$, $V_{CC} = 0$			10	
	V _O = 50 V			10	μA
Short-circuit output current	V _O = 6 V		40		mA

[†] All typical values are at $T_A = 25^{\circ}C$.

total device

PARAMETER		TEST CONDITIONS	TL50	UNIT		
		TEST CONDITIONS	MIN	TYP†	MAX	
Standby supply current	Off state			1	1.5	mA
Average supply current		R _t = 100 kΩ		1.1	2.1	mA

[†] All typical values are at $T_A = 25^{\circ}C$.

SLVS084C - APRIL 1994 - REVISED SEPTEMBER 1995

electrical characteristics, V_{CC} = 6 V, f_{osc} = 100 kHz, T_A = 25°C (unless otherwise noted)

reference

PARAMETER	TEST CONDITIONS	Т	UNIT		
FARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output voltage	COMP connected to FB		1		V
Input regulation	V_{CC} = 3.6 V to 40 V		2		mV
Output voltage change with temperature			-2		mV/V

undervoltage lockout

PARAMETER	TL5001Y		UNIT	
	MIN	TYP	MAX	
Upper threshold voltage		3		V
Lower threshold voltage		2.8		V
Hysteresis		200		mV

short-circuit protection

PARAMETER	TEST CONDITIONS	Т	UNIT		
	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SCP threshold voltage			1		V
SCP voltage, latched	No pullup		185		mV
SCP voltage, UVLO standby	No pullup		60		mV
Timing resistance			185		kΩ
SCP comparator 1 threshold voltage			1.5		V

oscillator

PARAMETER	TEST CONDITIONS	TI	UNIT		
	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Frequency	R _t = 100 kΩ		97		kHz
Standard deviation of frequency			15		kHz
Frequency change with voltage	V_{CC} = 3.6 V to 40 V		1		kHz
Frequency change with temperature			-0.4		kHz
			-0.2		KITZ
Voltage at RT			1		V

SLVS084C - APRIL 1994 - REVISED SEPTEMBER 1995

electrical characteristics, V_{CC} = 6 V, f_{osc} = 100 kHz, T_A = 25°C (unless otherwise noted) (continued)

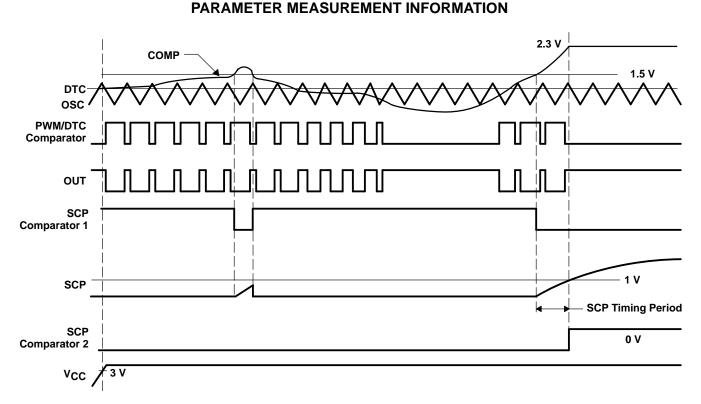
dead-time control

PARAMETER	TEST CONDITIONS	TL5001Y			UNIT
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	
Input threshold voltage	Duty cycle = 0%		0.7		V
Input threshold voltage	Duty cycle = 100%		1.3		v

error amplifier

PARAMETER				т	UNIT		
PARAMETER		TEST CONDITIONS		ΜΙΝ ΤΥΡ ΜΑΧ		MAX	UNIT
Input bias current					-160		nA
	Positive				2.3		V
Output voltage swing	Negative				0.3		V
Open-loop voltage amplification					80		dB
Unity-gain bandwidth					1.5		MHz
Output (sink) current		VI(FB) = 1.2 V,	COMP = 1 V		600		μA
Output (source) current		V _{I(FB)} = 0.8 V,	COMP = 1 V		-90		μΑ

output


PARAMETER	TEST CONDITIONS	т	UNIT		
	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output saturation voltage	I _O = 10 mA		1.5	2	V
Short-circuit output current	V _O = 6 V		40		mA

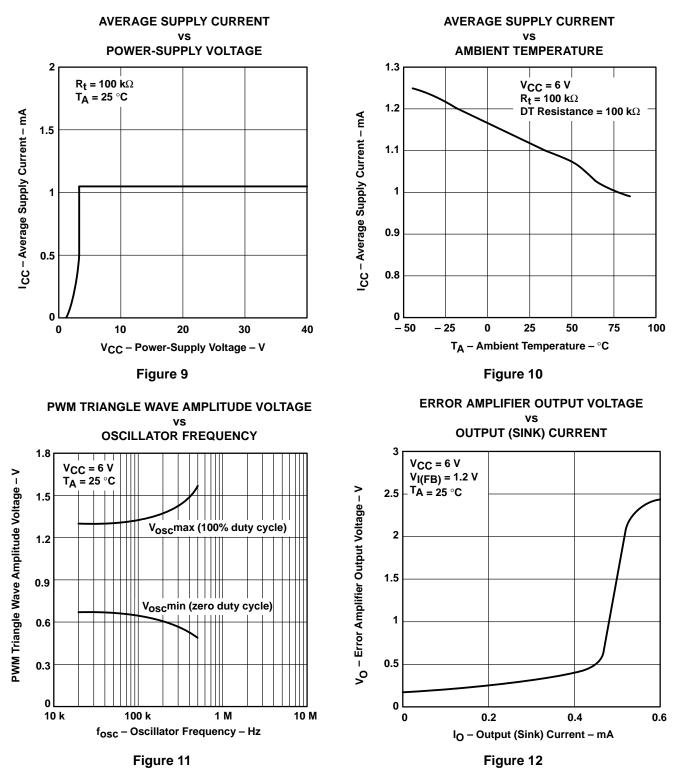
total device

PARAMETER		TEST CONDITIONS	Т	UNIT		
		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Standby supply current	Off state			1		mA
Average supply current		R _t = 100 kΩ		1.1		mA

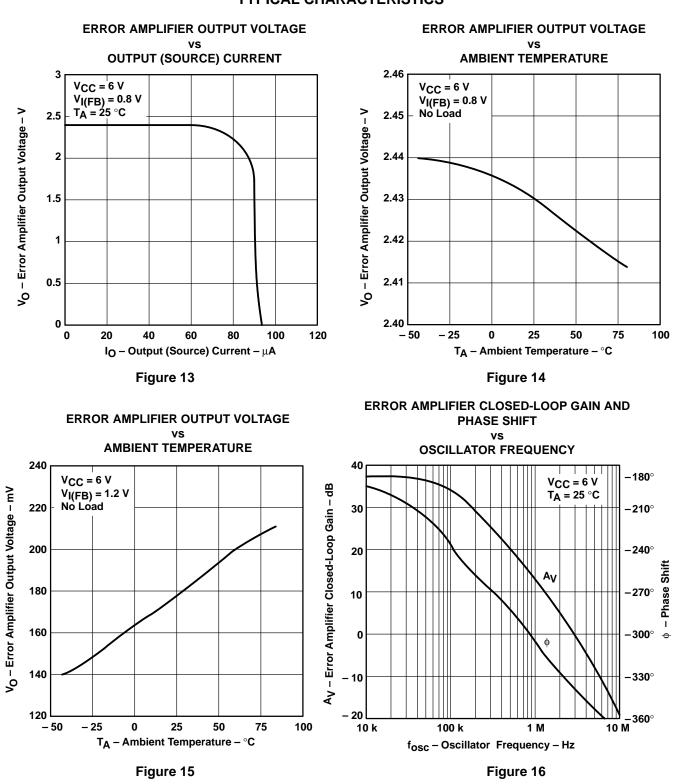
SLVS084C - APRIL 1994 - REVISED SEPTEMBER 1995

NOTE A. The waveforms show timing characteristics for an intermittent short circuit and a longer short circuit that is sufficient to activate SCP.

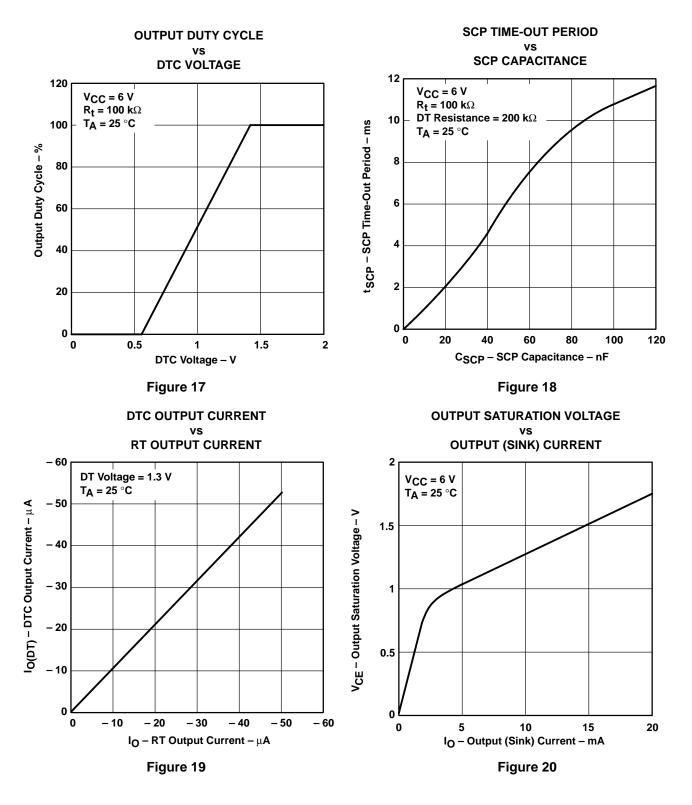
Figure 4. PWM Timing Diagram


SLVS084C - APRIL 1994 - REVISED SEPTEMBER 1995

TYPICAL CHARACTERISTICS



SLVS084C - APRIL 1994 - REVISED SEPTEMBER 1995


SLVS084C - APRIL 1994 - REVISED SEPTEMBER 1995

SLVS084C - APRIL 1994 - REVISED SEPTEMBER 1995

TYPICAL CHARACTERISTICS

SLVS084C - APRIL 1994 - REVISED SEPTEMBER 1995

APPLICATION INFORMATION

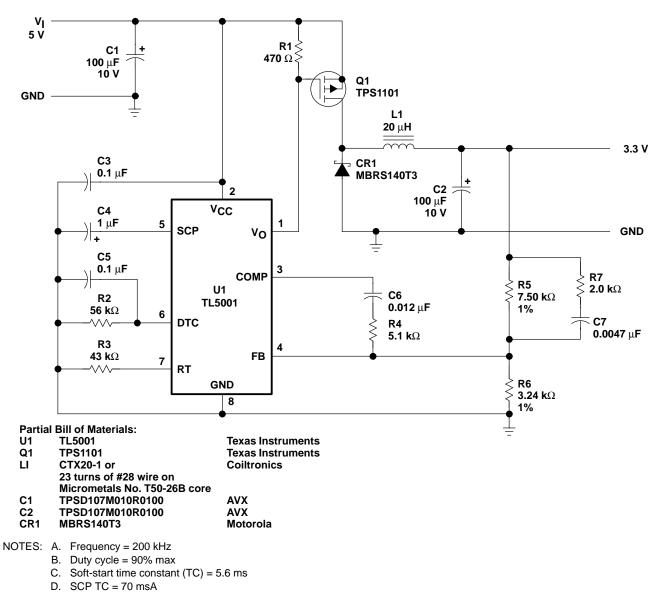


Figure 21. Step-Down Converter

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated