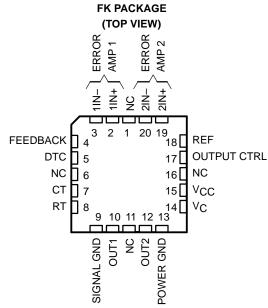
- Complete PWM Power Control Function
- Totem-Pole Outputs for 200-mA Sink or Source Current
- Output Control Selects Parallel or Push-Pull Operation
- Internal Circuitry Prohibits Double Pulse at Either Output
- Variable Dead-Time Provides Control Over Total Range
- Internal Regulator Provides a Stable 5-V Reference Supply, Trimmed to 1% Tolerance
- On-Board Output Current-Limiting Protection
- Undervoltage Lockout for Low V_{CC} Conditions
- Separate Power and Signal Grounds
- TL598Q Has Extended Temperature Range . . . -40°C to 125°C


description

The TL598 incorporates all the functions required in the construction of pulse-width-modulated (PWM) controlled systems on a single monolithic chip. Designed primarily for power supply control, the TL598 provides the systems engineer with the flexibility to tailor the power supply control circuits to a specific application.

The TL598 contains two error amplifiers, an internal oscillator (externally adjustable), a dead-time control (DTC) comparator, a pulse-steering flip-flop, a 5-V precision reference, undervoltage lockout control, and output control circuits. Two totem-pole outputs provide exceptional rise and fall time performance for power FET control. The outputs share a common source supply and common power ground terminals, which allow system designers to eliminate errors caused by high current-induced voltage drops and common-mode noise.

D, J, OR N PACKAGE (TOP VIEW)

NC-No internal connection

FUNCTION TABLE

INPUT OUTPUT CTRL	OUTPUT FUNCTION
V _I = GND	Single-ended or parallel output
V _I = REF	Normal push-pull operation

AVAILABLE OPTIONS

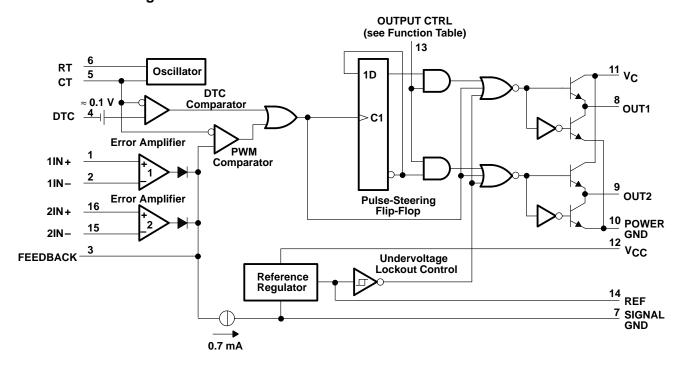
		PACKAGEI	DEVICES		
TA	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (J)	PLASTIC DIP (N)	CHIP FORM (Y)
0°C to 70°C	TL598CD	_	_	TL598CN	
-40°C to 125°C	TL598QD		_	TL598QN	TL598Y
−55°C to 125°C	_	TL598MFK	TL598MJ	_	

Chip forms are tested at 25°C.

Copyright © 1995, Texas Instruments Incorporated

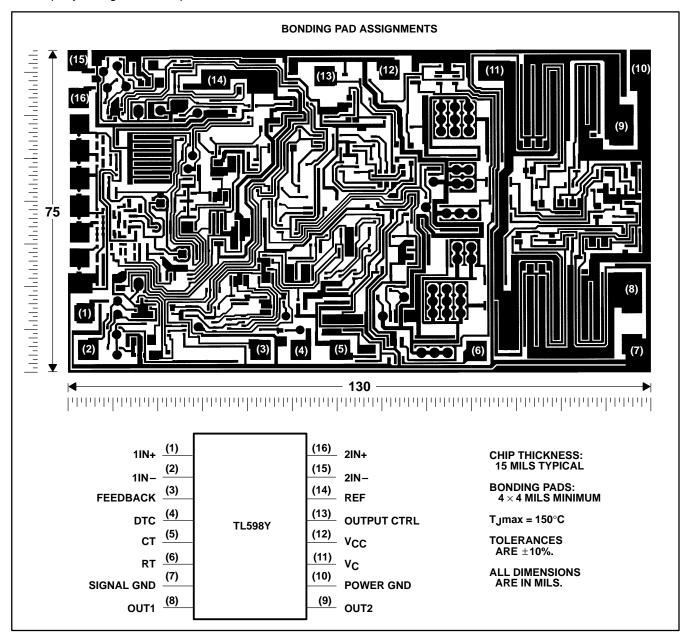
SLVS053B - FEBRUARY 1988 - REVISED OCTOBER 1995

The error amplifier has a common-mode voltage range from 0 V to $V_{CC} - 2 \text{ V}$. The DTC comparator has a fixed offset that prevents overlap of the outputs during push-pull operation. A synchronous multiple supply operation may be achieved by connecting RT to the reference output and providing a sawtooth input to CT.


The TL598 device provides an output control function to select either push-pull or parallel operation. Circuit architecture prevents either output from being pulsed twice during push-pull operation. The output frequency

for push-pull applications is one-half the oscillator frequency $\left(f_{O} = \frac{1}{2 \text{ RT CT}}\right)$. For single-ended applications:

$$f_0 = \frac{1}{RT \ CT}$$


The TL598C is characterized for operation from 0°C to 70°C. The TL598Q is characterized for operation from -40°C to 125°C. The TL598M is characterized for operation from -55°C to 125°C.

functional block diagram

TL598Y chip information

This chip, when properly assembled, displays characteristics similar to the TL598C. Thermal compression or ultrasonic bonding can be used on the doped aluminum bonding pads. The chip can be mounted with conductive epoxy or a gold-silicon preform.

SLVS053B - FEBRUARY 1988 - REVISED OCTOBER 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	41 V
Amplifier input voltage, V _I	
Collector voltage	41 V
Output current (each output), sink or source, IO	250 mA
Continuous total power dissipation	. See Dissipation Rating Table
Operating virtual junction temperature range, T _J : TL598C	0°C to 150°C
TL598Q	40°C to 150°C
	–55°C to 150°C
Storage temperature range, T _{sta}	65°C to 150°C
Case temperature for 60 seconds, T _C : FK package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N packa	ages 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential voltages, are with respect to the signal ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	190 mW
FK	1375 mW	11 mW/°C	880 mW	275 mW
J	1375 mW	11 mW/°C	800 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	230 mW

recommended operating conditions

			MIN	MAX	UNIT
Supply voltage, VCC			7	40	V
Amplifier input voltage, V _I	,		0	V _{CC} -2	V
Collector voltage				40	V
Output current (each output), sink or source, IO				200	mA
Current into feedback terminal, I _{IL}				0.3	mA
Timing capacitor, C _T			0.00047	10	μF
Timing resistor, R _T			1.8	500	kΩ
Oscillator frequency, fosc			1	300	kHz
	TI	L598C	0	70	
Operating free-air temperature, TA	TI	L598Q	-40	125	°C
	Ţ	L598M	-55	125	

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 \text{ V}$ (unless otherwise noted)

reference section (see Note 2)

PARAMETER	TEST CON	TEST CONDITIONS†		TL598C		TL598Q			UNIT
PARAMETER	TEST CON			TYP‡	MAX	MIN	TYP [‡]	MAX	UNII
Output voltage (REE)	In = 1 mA	$T_A = 25^{\circ}C$	4.95	5	5.05	4.95	5	5.05	V
Output voltage (REF)	10 = 1 IIIA	$T_A = MIN \text{ to } MAX$	4.9		5.1	4.9		5.1	V
Input regulation	V _{CC} = 7 V to 40 V	T _A = 25°C		2	25		2	22	mV
Output regulation	l = 1 m λ to 10 m λ	T _A = 25°C		1	15		1	15	mV
Output regulation	10 = 1 my to 10 my	$I_O = 1 \text{ mA to } 10 \text{ mA}$ $T_A = \text{MIN to MAX}$			50			80	IIIV
Output voltage change with temperature	$\Delta T_A = MIN \text{ to MAX}$			2	10		2	10	mV/V
Short-circuit output current§	REF = 0 V		-10	-48		-10	-48		mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: Pulse-testing techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

oscillator section, $C_T = 0.001 \mu F$, $R_T = 12 k\Omega$ (see Figure 1) (see Note 2)

PARAMETER	TEST CONDITIONS†	TL598C, TL5	TL598C, TL598Q				
PARAMETER	TEST CONDITIONS!	MIN TYP‡	MAX	UNIT			
Frequency		100		kHz			
Standard deviation of frequency¶	All values of V _{CC} , C _T , R _T , T _A constant	100		Hz/kHz			
Frequency change with voltage	$V_{CC} = 7 \text{ V to } 40 \text{ V}, \qquad T_{A} = 25^{\circ}\text{C}$	1	10	Hz/kHz			
Frequency change with temperature#	$\Delta T_A = MIN \text{ to MAX}$	70	120	Hz/kHz			
Trequency change with temperature	$\Delta T_A = MIN \text{ to MAX}, \qquad C_T = 0.01 \ \mu F$	50	80	I IZ/KI IZ			

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: Pulse-testing techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

error amplifier section (see Note 2)

DADAMETED	TEST COMPITIONS			TL598			
PARAMETER	TEST CONDITIONS				TYP [‡]	MAX	UNIT
Input offset voltage	FEEDBACK = 2.5 V				2	10	mV
Input offset current	FEEDBACK = 2.5 V				25	250	nA
Input bias current	FEEDBACK = 2.5 V			-	0.2	1	μΑ
Common-mode input voltage range	V _{CC} = 7 V to 40 V			to VCC-	2		V
Open-loop voltage amplification	ΔV_{O} (FEEDBACK) = 3 V,	V _O (FEEDBACK	(x) = 0.5 V to 3.5 V	70	95		dB
Unity-gain bandwidth					800		kHz
Common-mode rejection ratio	V _{CC} = 40 V,	$\Delta V_{IC} = 6.5 V$,	T _A = 25°C	65	80		dB
Output sink current (FEEDBACK)	FEEDBACK = 0.5 V			0.3	0.7		mA
Output source current (FEEDBACK)	FEEDBACK = 3.5 V			-2			mA
Phase margin at unity gain	FEEDBACK = 0.5 V to 3.5	V,	R _L = 2 kΩ		65°		
Supply voltage rejection ratio	FEEDBACK = 2.5 V,	$\Delta V_{CC} = 33 \text{ V},$	R _L = 2 kΩ		100		dB

[‡] All typical values except for parameter changes with temperature are at $T_A = 25$ °C.

NOTE 2: Pulse-testing techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

[‡] All typical values except for parameter changes with temperature are at $T_A = 25$ °C.

[§] Duration of the short circuit should not exceed one second.

[‡] All typical values except for parameter changes with temperature are at $T_A = 25$ °C.

[¶] Standard deviation is a measure of the statistical distribution about the mean as derived from the formula: $\sigma = \sqrt{\frac{\sum_{n=1}^{N-1} N_n - 1}{N_n - 1}}$

[#] Effects of temperature on external R_T and C_T are not taken into account.

SLVS053B - FEBRUARY 1988 - REVISED OCTOBER 1995

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 15 V (unless otherwise noted)

undervoltage lockout section (see Note 2)

PARAMETER	TEST CONDITIONS†	TL59	98C	TL59	UNIT	
PARAMETER	TEST CONDITIONS!	MIN	MAX	MIN	MAX	UNII
Throshold voltage	T _A = 25°C	4	6	4	6	V
Threshold voltage	$\Delta T_A = MIN \text{ to MAX}$	3.5	6.9	3	6.9	V
Lhiotoropio	$T_A = 25^{\circ}C$	100		100		mV
Hysteresis [‡]	$T_A = MIN \text{ to } MAX$	50		30	,	111.0

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

output section (see Note 2)

PARAMETER		TEST CONDITIONS			UNIT
PARAMETER		TEST CONDITIONS	MIN MAX		UNII
High-level output voltage	V _{CC} = 15 V,	$I_{O} = -200 \text{ mA}$	12		V
High-level output voltage	$V_{C} = 15 \text{ V}$	$I_O = -20 \text{ mA}$	13		V
Low level output voltage	V _{CC} = 15 V,	I _O = 200 mA		2	V
Low-level output voltage	$V_{C} = 15 \text{ V}$	$I_O = 20 \text{ mA}$		0.4	V
Output control input current	$V_I = V_{ref}$			3.5	mA
Output control input current	V _I = 0.4 V			100	μΑ

NOTE 2: Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

dead-time control section (see Figure 1) (see Note 2)

PARAMETER	TEST COMPITIONS	TL598C			TL598Q			UNIT
PARAMETER	TEST CONDITIONS	MIN	TYP§	MAX	MIN	TYP§	MAX	UNII
Input bias current (DTC)	V _I = 0 to 5.25 V		-2	-10		-2	-25	μΑ
Maximum duty cycle, each output	DTC = 0 V	0.45			0.45			
Input threshold voltage (DTC)	Zero duty cycle		3	3.3		3	3.2	V
input tilleshold voltage (BTC)	Maximum duty cycle	0			0			V

[§] All typical values except for parameter changes with temperature are at $T_A = 25$ °C.

pwm comparator section (see Note 2)

PARAMETER	TEST CONDITIONS	TL59	UNIT		
	TEST CONDITIONS		TYP§	MAX	UNIT
Input threshold voltage (FEEDBACK)	DTC = 0 V		3.75	4.5	V
Input sink current (FEEDBACK)	V(FEEDBACK) = 0.5 V	0.3	0.7		mA

[§] All typical values except for parameter changes with temperature are at T_A = 25°C.

total device (see Figure 1) (see Note 2)

PARAMETER	TEST CONDIT	IONE	TL598C, TL598Q MIN TYP§ MAX			UNIT
PARAMETER	TEST CONDIT	IUNS				UNII
Standby supply current	$RT = V_{ref}$	V _{CC} = 15 V		15	21	mA
	All other inputs and outputs open	V _{CC} = 40 V		20	26	IIIA
Average supply current	DTC = 2 V			15		mA

[§] All typical values except for parameter changes with temperature are at $T_A = 25$ °C.

NOTE 2: Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

[‡] Hysteresis is the difference between the positive-going input threshold voltage and the negative-going input threshold voltage.

NOTE 2: Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

NOTE 2: Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

NOTE 2: Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 15 V (unless otherwise noted)

switching characteristics, $T_A = 25^{\circ}C$ (see Note 2)

DADAMETER		TEST CONDI	TONG	TL59	8C, TL5	98Q	
PARAMETER		TEST CONDITIONS			TYP	MAX	UNIT
Output voltage rise time	CL = 1500 pF,	VC = 15 V,	VCC = 15 V,		60	150	ns
Output voltage fall time	See Figure 2				35	75	115

NOTE 2: Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

reference section (see Note 2)

PARAMETER	TEST COM	TEST CONDITIONS†			TL598M			
PARAMETER	TEST CON	TONST	MIN	TYP [‡]	MAX	UNIT		
Output voltage (REE)	lo = 1 mΛ	$T_A = 25^{\circ}C$	4.95	5	5.05	V		
Output voltage (REF)	I _O = 1 mA	$T_A = MIN \text{ to } MAX$	4.9		5.1	V		
Input regulation	V _{CC} = 7 V to 40 V	T _A = 25°C		2	22	mV		
Output regulation	l = -1 mΛ to 10 mΛ	$T_A = 25^{\circ}C$		1	15	mV		
Output regulation	$I_O = 1 \text{ mA to } 10 \text{ mA}$	$T_A = MIN \text{ to } MAX$			80	IIIV		
Output voltage change with temperature	$\Delta T_A = MIN \text{ to MAX}$			0.5%				
Short-circuit output current§	REF = 0		-10	-48		mA		

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

oscillator section, $C_T = 0.001 \mu F$, $R_T = 12 k\Omega$ (see Figure 1) (see Note 2)

PARAMETER	TEST CONDITIONS [†]	TL598M			UNIT
PARAMETER	TEST CONDITIONS!	MIN	TYP‡	MAX	ONII
Frequency			100		kHz
Standard deviation of frequency¶	All values of V _{CC} , C _T , R _T , T _A constant		10%		
Frequency change with voltage	$V_{CC} = 7 \text{ V to } 40 \text{ V}, \qquad T_{A} = 25^{\circ}\text{C}$		0.1%	1%	
Frequency change with temperature#	$\Delta T_A = MIN \text{ to MAX}$		7%	15%*	

^{*} On products compliant to MIL-STD-883, Class B, this parameter is not production tested.

 $= \sqrt{\frac{\sum_{n=1}^{N} (x_n - X)^2}{N - 1}}$

NOTE 2: Pulse-testing techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

[‡] All typical values except for parameter changes with temperature are at $T_A = 25$ °C.

[§] Duration of the short circuit should not exceed one second.

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values except for parameter changes with temperature are at $T_A = 25$ °C.

[¶] Standard deviation is a measure of the statistical distribution about the mean as derived from the formula:

[#] Effects of temperature on external R_T and C_T are not taken into account.

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 \text{ V}$ (unless otherwise noted)

error amplifier section (see Note 2)

PARAMETER		CT CONDITIONS		TL598M			UNIT
PARAMETER	'E	ST CONDITIONS		MIN	TYP [†]	MAX	UNII
Input offset voltage	FEEDBACK at 2.5 V				2	10	mV
Input offset current	FEEDBACK at 2.5 V				25	250	nA
Input bias current	FEEDBACK at 2.5 V				0.2	1	μΑ
Common-mode input voltage range	V _{CC} = 7 V to 40 V			0 to VCC-	-2		٧
Open-loop voltage amplification	ΔV_O (FEEDBACK) = 3	V, VO (FEEDBACK	() = 0.5 V to 3.5 V	70	95		dB
Unity-gain bandwidth					800		kHz
Common-mode rejection ratio	V _{CC} = 40 V,	$\Delta V_{IC} = 6.5 V$	T _A = 25°C	65	80		dB
Output sink current (FEEDBACK)	FEEDBACK at 0.5 V			0.3	0.7		mA
Output source current (FEEDBACK)	FEEDBACK at 3.5 V			-2			mA
Phase margin at unity gain	FEEDBACK at 0.5 V to	3.5 V,	$R_L = 2 k\Omega$		65°		
Supply voltage rejection ratio	FEEDBACK at 2.5 V,	$\Delta V_{CC} = 33 \text{ V},$	R _L = 2 kΩ		100		dB

 $^{^\}dagger$ All typical values except for parameter changes with temperature are at $T_A = 25^\circ C$.

undervoltage lockout section (see Note 2)

DADAMETER	TEST CONDITIONS‡	TL59	UNIT	
PARAMETER	TEST CONDITIONS+		MAX	UNII
Threshold voltage	T _A = 25°C	4	6	V
	$\Delta T_A = MIN \text{ to MAX}$	3	6.9	V
I hartanai a 8	T _A = 25°C	100		mV
Hysteresis§	$T_A = MIN \text{ to MAX}$	30		IIIV

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

output section (see Note 2)

PARAMETER		TEST CONDITIONS		7	TL598M			
PARAMETER		IESI C	ONDITIONS	MIN	TYP	MAX	UNIT	
Collector off-state current	V _{CE} = 40 V,	V _{CC} = 40 V,	DTC connected to 0 V		2	100	μΑ	
Lligh lovel cutnut voltage	$V_{CC} = 15 \text{ V}, I_{O} = -200 \text{ mA}$		12			V		
High-level output voltage	$V_{C} = 15 V$	$I_0 = -20 \text{ mA}$		13			V	
Law lovel output voltage	$V_{CC} = 15 \text{ V},$	I _O = 200 mA				2	V	
Low-level output voltage	$V_C = 15 V$	$I_O = 20 \text{ mA}$				0.4	V	
Output control input current	V _I = REF					3.5	mA	
Output control input current	V _I = 0.4 V					100	μΑ	

NOTE 2: Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

NOTE 2: Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

[§] Hysteresis is the difference between the positive-going input threshold voltage and the negative-going input threshold voltage.

NOTE 2: Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

SLVS053B - FEBRUARY 1988 - REVISED OCTOBER 1995

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 15 V (unless otherwise noted)

dead-time control section (see Figure 1) (see Note 2)

PARAMETER	TEST CONDITIONS	TL598M			UNIT
PARAMETER	TEST CONDITIONS		TYP [†]	MAX	ONII
Input bias current (DTC)	V _I = 0 to 5.25 V		-2	-25	μΑ
Maximum duty cycle, each output	DTC at 0 V	45%*			
Input threshold voltage (DTC)	Zero duty cycle		3	3.2	V
Input till control voltage (DTO)	Maximum duty cycle	0*			٧

^{*} On products compliant to MIL-STD-883, Class B, this parameter is not production tested.

pwm comparator section (see Note 2)

PARAMETER	TEST CONDITIONS		TL598M			
PARAMETER			TYP [†]	MAX	UNIT	
Input threshold voltage (FEEDBACK)	DTC = 0 V		3.75	4.5	V	
Input sink current (FEEDBACK)	V(FEEDBACK) = 0.5 V	0.3	0.7		mA	

† All typical values except for parameter changes with temperature are at T_A = 25°C.

NOTE 2: Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

total device (see Figure 1) (see Note 2)

PARAMETER	TEST CONDITIONS			TL598M			
PARAMETER	TEST CONDIT	IONS	MIN TYPT MAX			UNIT	
Standby supply current	RT at REF,	V _{CC} = 15 V		15	21	A	
	All other inputs and outputs open	V _{CC} = 40 V		20	26	mA	
Average supply current	DTC at 2 V			15		mA	

NOTE 2: Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

switching characteristics, $T_A = 25^{\circ}C$ (see Note 2)

PARAMETER		TEST CONDIT	IONE		ΓL598M		UNIT
PARAMETER		TEST CONDITIONS			TYP	MAX	UNII
Output voltage rise time	CL = 1500 pF,	VC = 15 V,	VCC = 15 V,			150*	ns
Output voltage fall time	See Figure 2					75*	115

^{*} On products compliant to MIL-STD-883, Class B, this parameter is not production tested.

NOTE 2: Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

[†] All typical values except for parameter changes with temperature are at $T_A = 25$ °C.

NOTE 2: Pulse-testing techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

SLVS053B - FEBRUARY 1988 - REVISED OCTOBER 1995

electrical characteristics, $V_{CC} = 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$

reference section (see Note 2)

PARAMETER	TEST CONDITIONS		UNIT		
PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
Output voltage (REF)	I _O = 1 mA		5		V
Input regulation	V _{CC} = 7 V to 40 V		2		mV
Output regulation	I _O = 1 mA to 10 mA		1		mV
Output voltage change with temperature	$\Delta T_A = MIN \text{ to MAX}$		2		mV/V
Short-circuit output current‡	REF = 0 V		-48		mA

[†] All typical values except for parameter changes with temperature are at $T_A = 25$ °C.

oscillator section, C_T = 0.001 μ F, R_T = 12 $k\Omega$ (see Figure 1) (see Note 2)

PARAMETER	TEST CONDITIONS	TL598Y			UNIT
	TEST CONDITIONS	MIN	TYP	MAX	UNII
Frequency			100		kHz
Standard deviation of frequency§	All values of V _{CC} , C _T , R _T , T _A constant		100		Hz/kHz
Frequency change with voltage	$V_{CC} = 7 \text{ V to } 40 \text{ V},$		1		Hz/kHz

[§] Standard deviation is a measure of the statistical distribution about the mean as derived from the formula:

$$\sigma = \sqrt{\frac{\sum_{n=1}^{N} (x_n - X)^2}{N - 1}}$$

NOTE 2 Pulse-testing techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

error amplifier section (see Note 2)

PARAMETER	TEST CONDITIONS	TL598Y		
PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Input offset voltage	Feedback = 2.5 V	2		mV
Input offset current	Feedback = 2.5 V	25		nA
Input bias current	Feedback = 2.5 V	0.2		μΑ
Open-loop voltage amplification	ΔV_{O} (FEEDBACK) = 3 V, V_{O} (FEEDBACK) = 0.5 V to 3.5 V	95		dB
Unity-gain bandwidth		800		kHz
Common-mode rejection ratio	$V_{CC} = 40 \text{ V}, \qquad \Delta V_{IC} = 6.5 \text{ V},$	80		dB
Output sink current (FEEDBACK)	FEEDBACK = 0.5 V	0.7		mA
Phase margin at unity gain	FEEDBACK = 0.5 V to 3.5 V, $R_L = 2 k\Omega$	65°		
Supply voltage rejection ratio	FEEDBACK = 2.5 V, ΔV_{CC} = 33 V, R_L = 2 k Ω	100		dB

NOTE 2 Pulse-testing techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

[‡] Duration of the short circuit should not exceed one second.

NOTE 2 Pulse-testing techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

SLVS053B - FEBRUARY 1988 - REVISED OCTOBER 1995

electrical characteristics, $V_{CC} = 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$

dead-time control section (see Figure 1) (see Note 2)

PARAMETER	TEST CONDITIONS	TL598Y			UNIT
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNII
Input bias current (DTC)	V _I = 0 to 5.25 V		-2		μΑ
Input threshold voltage (DTC)	Zero duty cycle		3		V

NOTE 2 Pulse-testing techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

pwm comparator section (see Note 2)

PARAMETER	TEST CONDITIONS		TL598Y		
	TEST CONDITIONS	MIN TYP MAX		UNIT	
Input threshold voltage (FEEDBACK)	DTC = 0 V		3.75		V
Input sink current (FEEDBACK)	FEEDBACK = 0.5 V		0.7		mA

NOTE 2 Pulse-testing techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

total device (see Figure 1) (see Note 2)

PARAMETER	TEST CONDITIONS MIN		TL598Y			UNIT	
PARAMETER			TYP	MAX	UNII		
Standby supply current	RT = V _{ref} ,	V _{CC} = 15 V		15		A	
	All other inputs and outputs open	V _{CC} = 40 V		20		mA	
Average supply current	DTC = 2 V			15		mA	

NOTE 2 Pulse-testing techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

PARAMETER MEASUREMENT INFORMATION

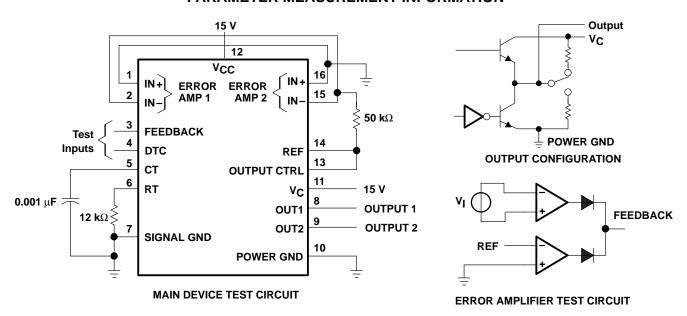


Figure 1. Test Circuits

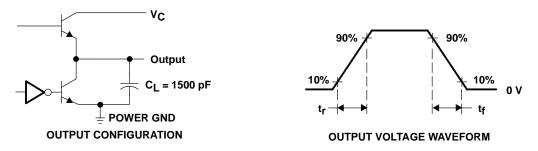


Figure 2. Switching Output Configuration and Voltage Waveform

TYPICAL CHARACTERISTICS

FREQUENCY VARIATION[†] **TIMING RESISTANCE** 100 k V_{CC} = 15 V 40 k f_{osc} - Oscillator Frequency - Hz **0.001** μF 10 k $0.01 \mu F$ 4 k 1 k **0.1** μF 400 100 $C_T = 1 \mu F$ 40

OSCILLATOR FREQUENCY AND

10 k

10

1 k

Figure 3

 $\mbox{R}_{\mbox{\scriptsize T}}$ – Timing Resistance – Ω

40 k 100 k

400 k

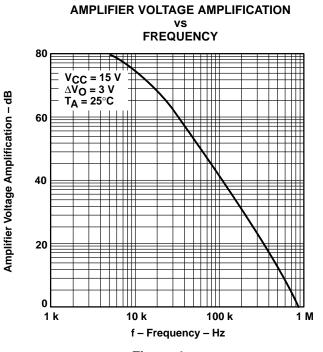


Figure 4

[†] Frequency variation (Δf) is the change in predicted oscillator frequency that occurs over the full temperature range.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated